本试题 “两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示,两根导体棒的质量皆为m,...” 主要考查您对能量转化与守恒定律
动量守恒定律的应用
导体切割磁感线时的感应电动势
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
能量守恒定律:
能量守恒中连接体问题的解法:
在两个或两个以上的物体组成的系统中,单独研究其中一个物体时,机械能往往是不守恒的,但对整体来说,机械能又常常是守恒的,所以在这类问题中通常需取整体作为研究对象,再找出其他运动联系来解题。
在判断系统的机械能是否守恒时,除重力、弹力外无其他外力做功,只是系统机械能守恒的必要条件,还需要看系统内力做功的情况。
(1)系统内两个直接接触的物体,如果满足动量守恒和机械能守恒条件,利用两守恒定律是解这类问题的常用方法两物体的运动联系是沿垂直于接触面的分速度相等。
(2)以轻绳相连的两个物体,如果和外界不存在摩擦力做功等问题时,只有机械能在两个物体之间的相互转移,两物体系统机械能守恒。解此类问题的关键是在绳的方向上两物体速度大小相等。
(3)与轻杆相连的物体在绕固定转动轴转动时,两物体的角速度相等。无转动轴时两物体沿杆方向的分速度相等。有摩擦阻力参与过程的能量问题的解法在有摩擦力或介质阻力参与的过程中,机械能不停地向内能转化,但在摩擦力或介质阻力大小不变的情况下,损失的机械能与通过的路程成正比。而在往返运动形式中,通过同一位置时的速率也就不相同,通过同样距离所用时间也不相同。在比较运动时间时,可以通过比较平均速度的大小进而得到时间关系。
从“六性”把握动量守恒定律的应用方法:
1.条件性
动量守恒定律的成立是有条件的,只有当系统满足动量守恒的条件时才能利用方程式进行计算。
2.矢量性
动量守恒方程是一个矢量方程。对于作用前后物体的运动方向都在同一直线上的问题,应选取统一的正方向,凡是与选取正方向相同的动量为正,相反为负。若方向未知,可设为与正方向相同列动量守恒方程,通过解得结果的正负,判定未知量的方向。
3.参考系的同一性速度
具有相对性,公式中的均应对同一参考系而言,一般均取对地的速度。
4.状态的同一性
相互作用前的总动量,这个“前”是指相互作用前的某一时刻,所以均是此时刻的瞬时速度,同理 应是相互作用后的某一时刻的瞬时速度。
5.整体性
动量守恒定律是针对一个物体系统而言的,具有系统的整体性。
6.普适性
它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。
临界与极值问题的解法:
在动量守恒定律的应用中,常常会遇到相互作用的两物体相距最近、避免相碰和物体开始反向运动等临界问题。分析临界问题的关键是寻找临界状态,临界状态的出现是有条件的,这种条件就是临界条件。临界条件往往表现为某个(或某些)物理量的特定取值。在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,这些特定关系的判断是求解这类问题的关键。
“人船模型”的解题规律:
“人船模型”是动量守恒定律的拓展应用,它把速度和质量的关系推广到质量和位移的关系,这样给我们提供了一种解题思路和解决问题的方法。人船问题的适用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零。
这种模型中涉及两种题型,一种题型是求解某物体在相互作用过程中通过的位移,此题型中需根据动量守恒、位移关系得到两个关系求解,如在图中,人从船头走到船尾时由动量守恒可得:
再由图中几何关系有
可得人船的位移分别为
另一种题型是求某一时刻物体的速度,这种题型是先要由动量守恒求得两物体的一个速度关系,再由能量守恒得到两物体的另一个速度关系,从而求得物体的瞬时速度(或与瞬时速度相关的物理量)。
导体切割磁感线产生的电动势:
电磁感应中电路问题的解法:
电磁感应规律与闭合电路欧姆定律相结合的问题,主要涉及电路的分析与计算。解此类问题的基本思路是:
(1)找电源:哪部分电路产生了电磁感应现象,则这部分电路就是电源。
(2)由法拉第电磁感应定律求出感应电动势的大小,根据楞次定律或右手定则确定出电源的正负极。
①在外电路,电流从正极流向负极;在内电路,电流从负极流向正极。
②存在双感应电动势的问题中,要求出总的电动势。
(3)正确分析电路的结构,画出等效电路图。
①内电路:“切割”磁感线的导体和磁通量发生变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻。
②外电路:除“电源”以外的电路即外电路。
(4)运用闭合电路欧姆定律、串并联电路特点、电功率等列方程求解。
与“两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间...”考查相似的试题有: