返回

高中三年级物理

首页
  • 探究题
    (1)下列说法正确的是_____________。(填写选项前的字母)
    (A)放射性元素的半衰期与核内部自身因素有关,与原子所处的化学状态和外部条件无关
    (B)β射线为原子的核外电子电离后形成的电子流
    (C)光电效应揭示了光具有粒子性,康普顿效应表明光子除了能量之外还具有动量
    (D)比结合能越大,原子核中核子结合得越牢固,原子越稳定
    (2)根据核反应方程,完成填空:粒子中含有_____________个中子;物理学家卢瑟福用该粒子轰击氮核(),发现了_____________,该核反应方程是:_____________。
    (3)普朗克常量h=6.63×10-34J·s,铝的逸出功W0=6.72×10-19J,现用波长λ=200nm的光照射铝的表面 (结果保留三位有效数字) 。
    ①求光电子的最大初动能;
    ②若射出的一个具有最大初动能的光电子正对一个原来静止的电子运动,求在此运动过程中两电子电势能增加的最大值(电子所受的重力不计)。
    本题信息:2010年0110模拟题物理探究题难度极难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “(1)下列说法正确的是_____________。(填写选项前的字母)(A)放射性元素的半衰期与核内部自身因素有关,与原子所处的化学状态和外部条件无关(B)β射线为...” 主要考查您对

能量转化与守恒定律

光电效应实验规律

光电效应方程

α、β、γ射线

半衰期

核反应

核能,爱因斯坦质能方程

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 能量转化与守恒定律
  • 光电效应实验规律
  • 光电效应方程
  • α、β、γ射线
  • 半衰期
  • 核反应
  • 核能,爱因斯坦质能方程

能量守恒定律:


能量守恒中连接体问题的解法:

在两个或两个以上的物体组成的系统中,单独研究其中一个物体时,机械能往往是不守恒的,但对整体来说,机械能又常常是守恒的,所以在这类问题中通常需取整体作为研究对象,再找出其他运动联系来解题。
在判断系统的机械能是否守恒时,除重力、弹力外无其他外力做功,只是系统机械能守恒的必要条件,还需要看系统内力做功的情况。
(1)系统内两个直接接触的物体,如果满足动量守恒和机械能守恒条件,利用两守恒定律是解这类问题的常用方法两物体的运动联系是沿垂直于接触面的分速度相等。
(2)以轻绳相连的两个物体,如果和外界不存在摩擦力做功等问题时,只有机械能在两个物体之间的相互转移,两物体系统机械能守恒。解此类问题的关键是在绳的方向上两物体速度大小相等。
(3)与轻杆相连的物体在绕固定转动轴转动时,两物体的角速度相等。无转动轴时两物体沿杆方向的分速度相等。有摩擦阻力参与过程的能量问题的解法在有摩擦力或介质阻力参与的过程中,机械能不停地向内能转化,但在摩擦力或介质阻力大小不变的情况下,损失的机械能与通过的路程成正比。而在往返运动形式中,通过同一位置时的速率也就不相同,通过同样距离所用时间也不相同。在比较运动时间时,可以通过比较平均速度的大小进而得到时间关系。


光电效应实验规律:

1、在光的照射下物体发射电子的现象叫光电效应。(下图装置中,用弧光灯照射锌版,有电子从锌版表面飞出,使原来不带电的验电器带正电。)

2、光电效应的实验规律

知识扩展:

为什么电子不能一次吸收多个光子而发生光电效应
由于电子非常小,能够捕获光子的几率就非常小,而同时捕获两个光子的几率就更小,有人计算过,一个电子同时捕获两个光子的几率大约为10-34。故可认为一个电子一次只能吸收一个光子。
那么电子为什么不能吸收一个光子后再吸收一个光子从而积累够发生光电效应所需的能量呢?因电子吸收光子的能量后,立即就发生剧烈的热运动,把获得的能量迅速向周围传递开去。到捕获到下一个光子时,原获得的能量早就消耗完了。而在原获得的能量消耗完之前另捕获一个光子,就要求捕获两光子的时间间隔极短。而在极短时间内捕获第二个光子的几率与同时捕获两个光子的几率差别不大(严格说此几率的大小与时间间隔长短有关,时间间隔越长,捕获两个光子的几率就越大,但此时间间隔要求极短)。


爱因斯坦光电效应方程:

Ek=hυ-W(Ek是光电子的最大初动能;W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功。)


光电效应的解法:

(1)对光电效应规律的问题掌握两条线索、明确各概念间的对应关系。
①入射光频率→决定光子能量→决定光电子的最大初动能。
②入射光强度→决定单位时间内接收的光子数→决定单位时间内发射的光电子数。即:

(2)对光电效应方程的应用,在理解光电效应方程的基础上,可以由方程式判定最大初动能的变化,比较逸出功、极限频率等情况,还可从图线的斜率、截距等求解相关问题。


光的强度与光电流强度:

(1)关于光强光强是指单位时间内通过垂直于光的传播方向上单位面积的能量,其计算公式为式中的Ⅳ为单位时间内通过垂直于光的传播方向上单位面积的光子数。同频率的光的强度随Ⅳ的不同而不同。 Ⅳ相同而频率不同的两种光其光的强度也不同。由此可见,光的强度是由光的频率v和光子数N共同决定的。
(2)关于单位时间内的光电子数在产生光电效应的前提下.因为一个电子成为光电子只能吸收一个光子的能量,所以一定频率的光的强度增大,则光电子数增加;不同频率的光,即使光强增大,逸出的光电子数也不一定多。
(3)关于光电流强度光电流强度是指光电流的饱和值(对应从阴极发射出的电子全部被拉向阳极的状态),因为光电流未达到饱和值前,其大小不仅与入射光的强度有关,还与光电管两极间的电压有关,只有在光电流达到饱和值后才和入射光的强度成正比。在入射光频率不变的情况下,光强正比于单位时间内照射到金属表面上单位面积的光子数,但若换用不同频率的光照射,即使光强相同,从金属表面逸出的光电子数也不相同,形成的光电流也不同。

光电效应的两个图像:

(1)光电子的最大初动能随入射光频率变化而变化的图像如图所示。

依据可知:当即图线在横轴上的截距在数值上等于金属的极限频率。
斜率普朗克常量。
图线在纵轴上的截距在数值上等于金属的逸出功:
(2)光电流随外电压变化而变化的规律
如图所示,纵轴表示光电流,横轴表示阴、阳两极处所加外电压。

时,光电流恰好为零,此时能求出光电子的最大初动能,即此电压称为遏止电压。
时,光电流恰达到饱和光电流,此时所有光电子都参与了导电,电流最大为


各种放射线的性质比较:


半衰期:

1、放射性元素的原子核有半数发生衰变所需的时间叫半衰期。
2、计算式为:,N表示核的个数,此式也可以演变成,式中m表示放射性物质的质量,n表示单位时间内放出的射线粒子数。以上各式左边的量都表示时间t后的剩余量。
3、半衰期由核内部本身的因素决定,跟原子所处的物理、化学状态无关。

衰变次数的计算方法:

(1)根据β衰变不改变质量数,首先由质量数改变确定α衰变次数,然后根据核电荷数守恒确定β衰变次数。
(2)设放射性元素经过n次α衰变和m次β衰变后,变成稳定的新元素,则表示该核反应的方程为
根据电荷数守恒和质量数守恒可列方程:

以上两式联立,解得:

由此可见,确定衰变次数可归结为解一个二元一次方程组。


核反应:

1、定义:原子核在其他粒子的轰击下产生新原子核的过程。所有核反应的反应前后都遵守:质量数守恒、电荷数守恒。
2、原子核的人工转变
①质子的发现:用α粒子轰击氮,
②电子的发现:用α粒子轰击铍,
爱因斯坦智能方程:

1、核能:核反应中放出的能叫核能。
2、当r<10-15 m时,核子间相互作用力(核力)起作用。原子核是原子凭借核力结合在一起构成的,而把核子分开所需要的能量,就是原子核的结合能。结合能与核子数之比,称做比结合能,也叫平均结合能。比结合能越大,表示原子核中核子结合得越牢固,原子核越稳定。
3、质量亏损:核子结合生成原子核,所生成的原子核的质量比生成它的核子的总质量要小些,这种现象叫做质量亏损。
4、质能方程:爱因斯坦的相对论指出,物体的能量和质量之间存在着密切的联系,它们的关系是:E=mc2,这就是爱因斯坦的质能方程。
质能方程的另一个表达形式是:ΔE=Δmc2

核反应方程的书写方法:

某种元素的原子核变为另一种元素的原子核的过程叫做核反应,常见的核反应分为衰变、人工转变、裂变、聚变等几种类型,无论写哪种类型的核反应方程,都应注意以下几点: (1)必须遵守电荷数守恒、质量数守恒规律。有些核反应方程还要考虑到能量守恒规律(例如裂变和聚变方程常含能量项)。
(2)核反应方程的箭头(→)表示核反应进行的方向。不能把箭头写成等号。
(3)写核反应方程必须要有实验依据,绝不能毫无根据地编造。
(4)在写核反应方程时,应先将已知原子核和已知粒子的符号填入核反应方程一般形式的适当位置上,然后根据质量数守恒和电荷数守恒规律计算出未知核 (或未知粒子)的电荷数和质量数,最后根据未知核(或未知粒子)的电荷数确定它们是哪种元素(或哪种粒子),并在核反应方程一般形式中的适当位置填写上它们的符号。


发现相似题
与“(1)下列说法正确的是_____________。(填写选项前的字母)...”考查相似的试题有: