返回

高中三年级物理

首页
  • 计算题
    放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.重力加速度g=10 m/s2。求:
    (1)物块在运动过程中受到的滑动摩擦力的大小;
    (2)物块在3~6 s中的加速度大小;
    (3)物块与地面间的动摩擦因数 。

    本题信息:2012年同步题物理计算题难度较难 来源:马凤侠
  • 本题答案
    查看答案
本试题 “放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.重力加速度g=10 m/s2。求:(1)物块在...” 主要考查您对

v-t图像

从运动情况确定受力

平衡力

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • v-t图像
  • 从运动情况确定受力
  • 平衡力

v—t图像:

物体的运动速度与时间的关系可以用图像来描述。以速度V为纵轴、时间T为横轴建立坐标系,再根据相关数据进项描点,用平滑的曲线将连依次连接起来,就建立了速度时间图象,也就是VT图像。


v—t图像的含义:

1、v-t图象描述速度随时间的变化规律;
2、在速度图像中,可以读出物体在任何时刻的速度;
3、在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值;
4、在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率;
5、图线与横轴交叉,表示物体运动的速度反向;
6、图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动。

知识点拨:

图一
图一是匀速直线运动的v—t的图像,其函数关系式为:v=v,匀速直线运动的物体的速度v是个恒量与路程S和时间t没关系。一段时间(t)内,走过的路程(S),满足关系式:S=vt,在图像中为一矩形包围的面积。

图二
图二是初速度不为0的匀加速直线运动的v—t图像,其函数关系式为:,匀加速直线运动的物体运动的加速度a(直线的斜率)是个恒量,初速度也是恒量,与路程S和时间t没关系。一段时间(t)内,走过的路程(S),满足关系式:,在图像中为“矩形+三角形”所包围的面积。


v-t图像的基本类型:


从运动情况确定受力:

1、知道物体的运动情况,应用运动学公式求出物体的加速度,再应用牛顿第二定律,推断或者求出物体的受力情况。
2、分析这类问题的关键是抓住受力情况和运动情况的桥梁——加速度。
3、求解动力学这两类问题的思路,可由下面的框图来表示。


瞬时加速度问题的解决方法:

分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。此类问题应注意以下两种基本模型。
(1)刚性绳(或接触面):可认为是一种不发生明显形变就能产生弹力的物体。若剪断(或脱离)后,其弹力立即消失,不需要考虑形变恢复时间。一般题目中所给的细绳(线)和接触面,在不加特殊说明时,均可按此模型处理。解决此模型的关键在于分析情景突变后的过程,利用过程的初状态分析求解状态突变后的瞬时加速度。
(2)弹簧(或橡皮绳):此类物体的特点是形变量大,形变恢复需要较长时间。在瞬时问题中,其弹力的大小往往可以看成不变。但当弹簧的一端不与有质量的物体连接时,轻弹簧的形变不需要时间,弹力可以突变。解决此类问题时需利用情景突变前的受力来确定情景突变后瞬间的受力及加速度。

动力学范围的整体法与隔离法:

处理连接体问题的方法有整体法和隔离法。
1.整体法将一组连接体作为一个整体看待,牛顿第二定律中是整体受的合外力,只分析整体所受的外力即可(因为连接体的相互作用力是内力,可不分析),简化了受力分析。在研究连接体时,连接体各部分的运动状态可以相同,也可以不同。当连接体各部分运动状态不同时,整体的合外力等于各部分质量与各部分加速度乘积的矢量和,即F写成分量形式有:

如果待求的问题不涉及系统内部的相互作用时,就可以采用整体法。
2.隔离法在求解连接体的相互作用力时采用,将某个部分从连接体中分离出来,其他部分对它的作用力就成了外力。
整体法与隔离法在研究连接体问题时经常交替使用。


平衡状态:

物体保持静止或匀速直线运动的状态称为平衡状态。静止状态称为静平衡,匀速直线运动状态称为动平衡。
①对静止的理解静止与速度v=0不是一回事,物体保持静止状态,说明a=0,a=0,两者同时成立,若仅是v=0,a≠0,如上抛到最高点的物体,此时物体并不能保持静止,上抛到最高点的物体并非处于平衡状态。
②力学中,当物体缓慢移动时,往往认为物体处于平衡状态。
③“静止”与“匀速直线运动”看起来好像是两种不同的运动形式,但本质却相同,这是因为物体的初始运动状态不同,若初始状态物体是静止的,则物体会一直静止着;若初始状态是做匀速直线运动的,则物体必然会保持匀速直线运动的状态。

力的平衡:

作用在物体上的几个力的合力为零,这种情况叫做力的平衡。

平衡条件:

1.内容为了使物体保持平衡状态,作用在物体上的力必须满足的条件,即平衡条件。
2.共点力平衡条件物体在共点力作用下处于平衡状态的条件是所受合外力为零,即
相互作用力与一对平衡力的对比:



解决平衡问题的常用方法:

 1.合成法与分解法这两种方法常用在物体在三个力作用下处于平衡状态的问题:
合成法:将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡,把三力平衡问题转化为二力平衡问题。
分解法:当物体受到三个共点力的作用处于平衡状态时,利用平行四边形对任意一个力沿另外两个力的作用线方向分解,则这两个分力分别与另外两个力等大反向。
无论是利用合成法还是利用分解法,都需要在作出平行四边形后再利用图中几何关系来解三角形,从而求出力的大小或方向,常用到的数学知识有:
(1)三角函数定义当出现直角三角形时,可利用三角函数的定义来求解力的大小或方向:

(2)正弦定理对于任意三角形,都有对边与对角的正弦比值相等,如图:


(3)相似三角形当力的三角形与图中的几何三角形相似时,仍有对应边成比例的关系。如在图所示的装置中,各力之间满足下列关系:
 

(4)菱形的性质当有两个力大小相等时,求这两个力的合力或将第三个力分解,就会得到一个菱形。而菱形的对角线相互垂直平分,而且平分一组对角。如在处理涉及滑轮或光滑挂钩的平衡问题时,将滑轮或光滑挂钩两侧绳上的拉力合成,运算过程就相对简便。
(5)余弦定理有时还需用到余弦定理,如在图中,有

2.矢量三角形法物体在三个力作用下处于平衡状态时,这三个力必可构成一封闭三角形。通过受力分析,画出物体受力示意图,将力平移后组成三角形。然后直接利用上面所述的数学知识解三角形。
3.正交分解法当物体受到多个共点力的作用处于平衡状态时,可以利用正交分解法建立坐标系,则有=0。通常根据平衡条件,应用正交分解法解题,在解决多个力平衡的问题时尤为方便。但是使用时应注意根据具体情况选择合适的坐标系,一般应遵循的原则为:不在坐标轴上的力越少越好,各力与坐标轴之间的夹角是特殊角为好。
4.整体法和隔离法以上几种方法的着眼点是物体受力情况,而整体法和隔离法是针对研究对象而言的,是解决连接体问题时需考虑的方法。
(1)整体法:它是把两个或两个以上的物体组成的系统作为一个整体来研究的一种分析方法,当只研究系统而不涉及系统内部的相互作用时一般可采用整体法。
(2)隔离法:它是将研究对象从周围物体(连接体)中隔离出来进行分析的方法。一般在研究系统内物体间相互作用时采用隔离法。

动态平衡问题的解决方法:

动态问题包括动态平衡问题的分析和动态非平衡问题的分析。
所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又始终处于一系列的平衡状态中。
解动态平衡问题通常有两种方法:
1.图解法
对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出物体在若干状态下力的平衡图(力的三角形或平行四边形),再由动态力的平行四边形各边长度变化及角度变化确定力的大小及方向的变化情况。
图解法通常使用在三力作用下或可等效为三力作用下的动态平衡问题。
(1)三个力的方向都不变。如图所示,此种情况下任一力增大时,其余两力也增大,反之亦然。
 
(2)三个力中有一个力恒定,有一个力方向恒定。如图所示,此情况下可作出力的矢量三角形(或平行四边形),确定三角形中不变的边与方位不变的边,由线段长度及另一边的方位变化来确定力的大小、方向变化情况。

2.解析法
对物体进行受力分析后,利用平衡条件列出方程,解出所判断量的表达式,利用有关数学知识讨论表达式得出答案。从物体受力数量来说,解析法与图解法不同。解析法不仅可以用来解决三个力作用下的动态平衡问题,并且对多个力作用下的动态平衡问题用解析法更方便。从解析法需引入的变量来看,可以是某一角度(这通常需要在力的三角形巾有一个角是不变的),也可以是某一线段的长度(这种情况下通常题目中出现的几何三角形与力的三角形相似),这是在三力作用下物体处于动态平衡。若是多个力作用下的动态平衡,通常以某一角度为变量,利用正交分解来获得平衡方程,进而得到要分析的物理量的表达式。
3.动态平衡中的滑轮模型对于轻质光滑动滑轮及与之作用相当的光滑挂钩、光滑环等,具有如下特征:
(1)两侧绳中张力相同;
(2)两侧绳与竖直方向夹角相等;
(3)绳与竖直方向的夹角θ取决于绳的总长度l及两悬点问水平距离


平衡物体的临界与极值问题的解决方法:

1.临界与极值问题
(1)临界问题某种物理现象变化为另一种物理现象或物体从某种特性变化为另一种特性时,发生质的飞跃的转折状态为临界状态,临界状态也可理解为“恰好出现”或“恰好不出现”某种现象的状态。平衡物体的临界状态是指物体所处平衡状态将要变化的状态,是物体所处的平衡状态将要被破坏而尚未被破坏的状态。涉及临界状态的问题叫临界问题。解决这类问题一定要注意 “恰好出现”或“恰好不出现”的条件。
(2)极值问题极值是指研究平衡问题中某物理量变化时出现的最大值或最小值。中学物理的极值问题可分为简单极值问题和条件极值问题,区分的依据就是是否受附加条件限制,如受附加条件限制,则为条件极值。
2.解决方法
(1)临界问题的解决方法解决临界问题的基本思维方法是假设推理法,即先假定物体处于某一状态,然后根据平衡条件及相关知识列方程求解,再根据求得的结果反过来推断物体在给定条件下应处的状态。
(2)极值问题的解决方法对于简单极值问题,可先对物体进行受力分析,然后由平衡条件列出方程,再明确题目中的物理量在什么条件下取极值,或在出现极值时有何物理特征,根据这些条件或特征去寻找极值。对于条件极值问题,有如下两种解决方法:
①解析法:根据物体的平衡条件列方程,在解方程时采用数学知识求极值。通常用到的数学知识有二次函数求极值,均值定理求极值,讨论分式求极值,三角函数求极值以及几何法求极值等。
②图解法:根据物体的平衡条件作出力的矢量图,如只受三个力时,则这三个力必构成封闭矢量三角形,然后根据矢量图进行动态分析,确定最大值和最小值,此法简便、直观。
发现相似题
与“放在水平地面上的一物块,受到方向不变的水平推力F的作用,力...”考查相似的试题有: