晶体凝固时的温度特点:放出热量,温度不变;
非晶体凝固时的温度特点:放出热量,温度不断降低
晶体凝固的条件是:①温度要达到凝固点;②继续向外放热
注意:同种晶体的熔点与凝固点是相同的。
晶体和非晶体凝固时的温度变化曲线(如图所示)
数形结合法在晶体熔化(凝固)过程中的运用 在物理中常采用数学图像方法,把物理现象或物理量之间的关系表示出来。如用温度一时间图像表达物态变化中熔化、凝固、沸腾的特点。涉及的图像有晶体(或非晶体)熔化图像、凝固图像、水的沸腾图像等。图像法具有直观、形象、简捷和概括力强的独特优点。它能将物理情景、物理过程、物理状态以直观的方式呈现在我们面前。
例下表是研究冰熔化时记录的实验数据。
(1)在图中作出冰的熔化图像;
(2)从表中可以看出,冰的熔点是____;
(3)冰熔化过程经历了____min;
(4)从计时开始,经过12mid,冰的温度是____,状态是____。
解析:作图时,步骤是先描点再连线;在8~ 16min时,冰的温度保持0℃不变,故其熔点为0℃;熔化过程经历了8min;由表知,从计时开始,经过12min,冰的温度为0℃,此时冰已持续熔化了4min,但并未熔化完,故为固液共存状态。
答案:(1)冰的熔化图像如图所示
(2)0℃ (3)8 (4)0℃;固液共存状态
图像法描述晶体与非晶体的熔化和凝固过程
|
晶体 |
非晶体 |
物质举例 |
海波、冰、食盐、水晶、明矾、萘、各种金属 |
松香、玻璃、蜂蜡、沥青 |
熔点和凝固点 |
有 |
无 |
熔化图像 |
AB段:物质为固态 BC段:熔化过程,物质为固液共存态,吸收热量,温度不变 (此温度为熔点) CD段:物质为液态 |
熔化过程中,物质吸收热量,温度逐渐升高 |
凝固图像 |
EF段:物质为液态 FG段:凝固过程,物质为固液共存态,放出热量,温度不变 (此温度为凝固点) GH段:物质为固态 |
凝固过程中,物质放出热量,温度降低 |
重力的计算公式:物体所受的重力跟它的质量成正比,g=
,G=mg。(g=9.8N/g)
重力与质量的区别和联系:
|
质量 |
重力 |
区别 |
概念 |
物体所含物质的多少 |
由于地球吸引而使物体受到的力 |
符号 |
m |
G |
量性 |
只有大小,没有方向 |
既有大小,又有方向 |
单位 |
千克(kg) |
牛顿(N) |
与地理位置的关系 |
与位置无关 |
与位置有关 |
公式 |
m=ρV |
G=mg |
测量工具 |
天平 |
测力计 |
联系 |
重力与质量的关系是G=mg(g=9.8N/kg) |
重力加速度: 重力加速度g的方向总是竖直向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。重力加速度的数值随海拔高度增大而减小。当物体距地面高度远远小于地球半径时,g变化不大。而离地面高度较大时,重力加速度g数值显著减小,此时不能认为g为常数。
距离地面同一高度的重力加速度,也会随着纬度的升高而变大。由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也达到最大。