浮力:
(1)定义:浸在液体中的物体受到向上托的力叫做浮力。
(2)施力物体与受力物体:浮力的施力物体是液体 (或气体),受力物体是浸入液体(或气体)中的物体。
(3)方向:浮力的方向总是竖直向上的。
阿基米德原理:(1)原理内容:浸在液体里的物体受到液体竖直向上的浮力,浮力的大小等于它排开的液体受到的重力。
(2)公式:
,式中ρ
液表示液体的密度,V
排是被物体排开的液体的体积,g取9.8N/kg。
浮力大小跟哪些因素:有关浸在液体中的物体受到浮力的大小,跟物体浸入液体中的体积有关,跟液体的密度有关,跟物体浸入液体中的深度无关。跟物体本身密度大小无关。
阿基米德原理的五点透析:(1)原理中所说的“浸在液体里的物体”包含两种状态:一是物体的全部体积都浸入液体里,即物体浸没在液体里;二是物体的一部分体积浸入液体里,另一部分露在液面以上。
(2)G
排指被物体排开的液体所受的重力,F
浮= G
排表示物体受到的浮力的大小等于被物体排开的液体的重力。
(3)V
排是表示被物体排开的液体的体积,当物体全部浸没在液体里时,V
排=V
物;当物体只有一部分浸入液体里时,则V
排<V
物。
(4)由
可以看出,浮力的大小只跟液体的密度和物体排开液体的体积这两个因素有关,而跟物体本身的体积、密度、形状、在液体中的深度、液体的多少等因素无关。
(5)阿基米德原理也适用于气体,但公式中ρ
液应该为ρ
气。
控制变量法探究影响浮力大小的因素: 探究浮力的大小跟哪些因素有关时,用“控制变量法”的思想去分析和设计,具体采用“称量法”来进行探究,既能从弹簧测力计示数的变化中体验浮力,同时,还能准确地测出浮力的大小。
例1小明在生活中发现木块总浮在水面,铁块却沉入水底,因此他提出两个问题:
问题1:浸入水中的铁块是否受到浮力?
问题2:浮力大小与哪些因素有关?
为此他做了进一步的猜想,设计并完成了如图所示实验,
(1)(b)、(c)图中弹簧测力计示数均小于(a)图中弹簧测力计示数,说明浸入水中的铁块__(选填 “受到”或“不受到”)浮力;
(2)做___(选填字母)两次实验,是为了探究铁块浸没在水中时所受浮力大小与深度是否有关;
(3)做(d)、(e)两次实验,是为了探究浮力大小与 __的关系。
解析(1)物体在水中时受到水向上托的力,因此示数会变小。
(2)研究浮力与深度的关系时,应保持V
排和ρ
液不变,改变深度。
(3)在V
排不变时,改变ρ
液,发现浮力大小改变,说明浮力大小与ρ
液有关。
答案(1)受到(2)(c)、(d)(3)液体密度
公式法求浮力: 公式法也称原理法,根据阿基米德原理,浸入液体中的物体受到向上的浮力,浮力的大小等于物体排开的液体受到的重力(表达式为:F
浮=G
排=ρ
液gV
排)。此方法适用于所有浮力的计算。
例1一个重6N的实心物体,用手拿着使它刚好浸没在水中,此时物体排开的水重是10N,则该物体受到的浮力大小为____N。
解析由阿基米德原理可知,F
浮=G
排=10N。
答案10
实验法探究阿基米德原理: 探究阿基米德原理的实验,就是探究“浮力大小等于什么”的实验,结论是浮力的大小等于物体排开液体所受的重力。实验时,用重力差法求出物体所受浮力大小,用弹簧测力计测出排开液体重力的大小,最后把浮力与排开液体的重力相比较。实验过程中注意溢水杯中的液体达到溢口,以保证物体排开的液体全部流入小桶。
例1在探究“浮力大小等于什么”的实验中,小明同学的一次操作过程如图所示。
(1)测出铁块所受到的重力G铁;
(2)将水倒入溢水杯中;
(3)把铁块浸入溢水杯中,读出弹簧测力计示数F;
(4)测出小桶和被排开水的总重力G;
(5)记录分析数据,归纳总结实验结论,整理器材。
分析评估小明的实验,指出存在的问题并改正。
解析:在探究“浮力大小等于什么”的实验中,探究的结论是浮力的大小等于物体排开的液体所受到的重力,所以实验时,需要用弹簧测力计测出铁块受到的浮力和它排开水的重力进行比较得出结论,因此实验过程中需要测空小桶的重力G
桶,并且将溢水杯中的水加至溢水口处。
答案:存在的问题:
(1)没有测空小桶的重力 (2)溢水杯的水量不足
改正:(1)测空小桶的重力G
桶(2)将溢水杯中的水加至溢水口处
浮力知识梳理:
曹冲称象中的浮力知识: 例曹冲利用浮力知识,巧妙地测出了大象的体重。请你写出他运用的与浮力有关的知识_____、 ____,另外,他所用到的科学研究方法是:_____和______.
解析:曹冲称象的过程是首先把大象放在船上,在水面处的船舷上刻一条线,然后把大象牵上岸。再往船上放入石块,直到船下沉到船舷上的线再次与水面相平时为止,称出此时船上石头的质量即为大象的质量。两次船舷上的线与水面相平,根据阿基米德原理可知,为了让两次船排开水的体积相同,进而让两次的浮力相同,再根据浮沉条件,漂浮时重力等于浮力可知:船重+大象重=船重+石头重,用多块石头的质量替代了不可拆分的大象的质量,这是等效替代法在浮力中的一个典型应用。
答案:浮沉条件 阿基米德原理 等效替代法化整为零法
体积:体积表示物体所占空间的大小,用字母V,来表示。
体积的单位也采用国际制单位,有立方米(m
3)、立方分米(dm
3)、立方厘米(cm
3)。换算关系为:1m
3= 1000dm
3:1dm
3=1000cm
3;1m
3=10
6cm
3。
容积:
容积是指容器内部窄间的大小,容积单位有升 (L)、毫升(mL)。
换算关系为:1L=1000mL。与体积单位的对应关系是1L=1dm
3;1mL=1cm
3。
量筒:1. 量筒的使用: ①量筒的规格量筒是用来量取液体体积的一种玻璃仪器,一般规格以所能度量的最大容量(mL)表示,常用的有10mL,20mL,25mL,50mL,100mL,250mL、500mL,1000mL等多种规格。
②量筒的选择方法:
量筒外壁刻度都是以mL为单位。10mL量筒每小格表示0.1mL,而50mL量筒有每小格表示1mL或0.5mL的两种规格。可见,绝大多数的量筒每小格是量筒容量的1/100,少数为1/50。
量筒越大,管径越粗,其精确度越小,由视线的偏差所造成的读数误差也就越大。
所以,实验中应根据所取溶液的体积,尽量选用能一次量取的最小规格的量筒。分次量取会引起较大误差。如量取70mL液体,应选用100mL量筒一次量取,而不能用10mL量筒量取7次。
③液体的注入方法
向量筒里注入液体时,应用左手拿住量筒,使量筒略倾斜,右手拿试剂瓶,标签对准手心。使瓶口紧挨着量筒口,让液体缓缓流入,待注入的量比所需要的量稍少(约差1mL)时,应把量筒水平正放在桌面上,并改用胶头滴管逐滴加入到所需要的量。
④量筒的刻度
量筒没有“0”刻度,“0”刻度即为其底部。一般起始刻度为总容积的1/10或1/20。例如:10mL量筒一般从0.5mL处才开始有刻度线,所以,我们使用任何规格的量筒都不能量取小于其标称体积数的1/20以下体积的液体,否则,误差太大。应该改用更小的合适量筒量取。
在实验室做化学实验时,量筒的刻度面不能背对着自己,这样使用起来很不方便。因为视线要透过两层玻璃和液体,不容易看清。若液体是浑浊的,就更看不清刻度,而且看刻度数字也不顺眼,所以刻度面正对着自己为好。
⑤读取液体的体积方法
注入液体后,要等一会,使附着在内壁上的液体流下来,再读取刻度值。否则,读出的数值将偏小。
读数时,应把量筒放在平整的桌面上,观察刻度时,视线、刻度线与量筒内液体的凹液面最低处三者保持水平,再读出所取液体的体积数。否则,读数会偏高或偏低。
⑥关于量筒仰视与俯视的问题
在看量筒的容积时是看液面的中心点
仰视时视线斜向上视线与筒壁的交点在液面下所以读到的数据偏低,实际值偏高。
俯视时视线斜向下视线与筒壁的交点在液面上所以读到的数据偏高,实际值偏低。
2. 注意事项
①量筒面上的刻度是指室内温度在20℃时的体积数。温度升高,量筒发生热膨胀,容积会增大。由此可知,量筒是不能加热的,也不能用于量取过热的液体,更不能在量筒中进行化学反应或配制溶液。
②量筒一般只能用于要求不是很严格时使用,通常可以应用于定性分析和粗略的定量分析实验,精确的定量分析是不能使用量筒进行的,因为量筒的误差较大,此时可用移液管或滴定管来代替。
③从量筒中倒出液体后是否要用水冲洗要看具体情况而定。如果是为了使所取的液体量更准确,似乎要用水洗涤后并把洗涤液倒入所盛液体的容器中,这是不必要的。因为在制造量筒时已经考虑到有残留液体这一点;相反,如果洗涤反而使所取体积偏大。如果是用同一量筒再量别的液体,这就必须用水冲洗干净并干燥,为防止相互污染。
④10mL的量筒一般不需读取估读值。因为量筒是粗量器,并且又是量出仪器,在倒出所量取的液体时,总会有1~2滴(1滴相当于0.05mL)附着在内壁上而无法倒出,其相差的体积大小已经和其最小刻度差相同,所以估读值再准确也无多大意义,只需读取到0.1mL。
规格大于10mL的量筒一般需要读取估读值,若不读取,误差反而更大。因此,无论多大规格的量筒,一般读数都应保留到0.1mL
3. 量筒的使用要做到“五会”①会选。任何一只量筒都有一定的测量范围,即量程,要能根据被测量的量选择量程合适的量筒。
②会放。使用量筒测量时,量筒要平稳地放置于水平桌面上。
③会看。读取量筒的数据时,若液面是凹液面,视线应以凹液面底部为准;若液面是凸液面,视线应以凸液面顶部为准。
④会读。要会根据量筒刻度的分度值读出准确值,同时要读出分度值的下一位,即估计值。
⑤会用。
测体积的方法: ①用量筒直接测液体体积;
②规则形状的物体可用刻度尺测出相关长度,算出体积;
③用代替法可测不规则形状容器的容积。先将容器灌满水,然后将水倒入量筒中即可测其容积;
④用量筒、水、细线可测密度比水大的固体体积。具体步骤是:在量筒中加入适量的水,记下水的体积V
0;用细线系住物体并轻轻放入量筒中,记下此时水和物体的体积为
V1;物体的体积V=V
1-V
0。用量筒测固体的体积,采取的是“排液法”,依据的是等量替代;
⑤形状不规则、且漂浮在液体上的固体的体积的测量,可用非常规的办法测量。由于物体漂浮于液面,可以用“针压法”,也就是用一枚细针将漂浮物压入液体中;或用一密度比液体密度大得多且不溶于液体的物体将漂浮物拉入水中,此法称为“助沉法”。如用量筒、水、细针(或细线、铁块)可测密度比水小的固体的体积。
公式:
密度的公式:ρ=m/V(ρ表示密度、m表示质量、V表示体积)
密度公式变化:m=ρV、V=m/ρ
正确理解密度公式:
理解密度公式时,要注意条件和每个物理量所表示的特殊含义。从数学的角度看有三种情况(判断正误):
1. 同种物质:(1)ρ一定时,m和V成正比;(因为ρ=m/V,ρ一定,m增大,V也增大,所以成正比)
(2)m一定时,ρ与V成反比;(因为m=ρv,m一定,v增大,ρ变小,所以成反比)
(3)V一定时,ρ与m成正比。
结合物理意义,三种情况只有
(1)的说法正确,(2)(3)都是错误的。
因为同种物质的密度是一定的,它不随体积和质量的变化而变化,所以在理解物理公式时,不可能脱离物理事实,不能单纯地从数学的角度理解物理公式中各量的关系。
2. 不同物质:(1)具有不同物质的物体,在体积相同的情况下,密度大的质量也大,物体的质量跟它的密度成正比
;
(2)具有不同物质的物体,在质量相同的条件下,密度大的体积反而小,物体的体积跟它的密度成反比
。