返回

高中三年级化学

首页
  • 填空题
    单质碘与红磷在常温下混合不反应,但滴入几滴水后能剧烈反应,生成HI和H3PO3。但实验室制取氢碘酸的方法是把H2S通入I2水中,过滤生成的硫,可得质量分数为50%的氢碘酸
    (1)写出实验室制取氢碘酸的化学方程式______________________;
    (2)氢碘酸在空气中放置易易氧化变质,写出可能发生反应的化学方程式___________________________;
    (3)为防止氢碘酸在空气中氧化变质,可在氢碘酸中加入少量___________,写出有关反应的化学方程式__________________________。
    (4)在温度t1和t2下,X2(g)和H2反应生成HX的平衡常数如下表:

    ①已知t2>t1,HX的生成反应是__________ 反应(填“吸热”或“放热”)。
    ②共价键的极性随共用电子对偏移程度的增大而增强,HX共价键的极性由强到弱的顺序是_______________。
    ③仅依据K的变化,可以推断出:随着卤素原子核电荷数的增加,_________________(选填字母)。
    a.在相同条件下,平衡时X2的转化率逐渐降低
    b.X2与H2反应的剧烈程度逐渐减弱
    c.HX的还原性逐渐减弱
    d.HX的稳定性逐渐减弱
    本题信息:2012年江西省模拟题化学填空题难度较难 来源:于丽娜
  • 本题答案
    查看答案
本试题 “单质碘与红磷在常温下混合不反应,但滴入几滴水后能剧烈反应,生成HI和H3PO3。但实验室制取氢碘酸的方法是把H2S通入I2水中,过滤生成的硫,可得质量分数为50%...” 主要考查您对

硫化氢

单质磷及其化合物

元素周期律

共价键

化学平衡常数

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 硫化氢
  • 单质磷及其化合物
  • 元素周期律
  • 共价键
  • 化学平衡常数

硫化氢:

H2S的分子结构与H2O相似,呈角形,是一种极性分子,但极性比水弱,不能形成氢键。熔点(-86℃) 和沸点(-71℃)都比水低。


硫化氢的物理性质和化学性质:

1.物理性质:H2S是一种无色,有臭鸡蛋气味的气体,比空气稍重,能溶于水(常温常压下,1体积水中能溶解2.6体积硫化氢)。
2.化学性质:
(1)对热较不稳定
 
(2)强还原性

3.氢硫酸氢硫酸是二元弱酸,可分步电离:

具有挥发性,能使石蕊试液变红。氢硫酸具有酸的通性。

Na2S、NaHS均具有强还原性,在空气中均易被氧化。
S2-遇Fe3+、ClO-、NO3-(H+)等氧化性离子都发生氧化还原反应。


磷在自然界中的存在:

自然界中没有游离态的磷,磷主要以磷酸盐的形式存在于矿石中。磷和氮一样,是构成蛋白质的成分之一。动物的骨骼、牙齿和神经组织,植物的果实和幼芽,生物的细胞里都含有磷,磷对维持生物体正常的生理机能起着重要的作用。


磷的物理性质:

磷的单质有多种同素异形体,其中常见的是白磷和红磷。白磷和红磷的主要性质如下表。

特别提醒白磷遇光会逐渐变为黄色。因此,白磷又称黄磷,白磷的颜色往往表述为“白色或黄色”。

白磷和红磷的化学性质:

白磷和红磷都能在空气或氧气中燃烧,燃烧产物一般是五氧化二磷,且反应放出大量的热,4P+5O22P2O5

磷的用途:

白磷和红磷有许多用途,如都可用于制造纯度较高的磷酸;白磷可用于制造燃烧弹、烟幕弹等;红磷可用于制农药、安全火柴等。


白磷和红磷的分子结构:

白磷的分子组成为P4,分子的空间构型为正四面体(如图A)。红磷的结构较复杂,有人认为红磷是P4分子断裂一个键后相互结合形成的长链状分子(如图B).

特别提醒白磷和红磷的化学式通常都写为P。


磷的化合物:

 (1)五氧化二磷:
五氧化二磷的分子式为,通常写为分子的空间构型如图所示。

五氧化二磷通常为白色固体,由磷在空气中燃烧生成, 632K时升华。
五氧化二磷是典型的酸性氧化物,具有酸性氧化物的通性。
五氧化二磷很易跟水反应,跟冷水反应生成偏磷酸,跟热水反应生成磷酸,反应放出大量的热。

五氧化二磷的强亲水性决定了它可用作干燥剂。五氧化二磷是一种固态、酸性、无强氧化性的干燥剂,干燥能力非常强。
(2)磷酸:
磷酸为三元中强酸,属于弱电解质,易溶于水,在水中分三级电离。

纯磷酸是无色晶体,熔点为315K.沸点较高,可溶于水。
磷酸无强氧化性,具有酸的通性。为了避免Br-、 I-被氧化,可用浓磷酸代替浓硫酸在实验室中制备HBr和HI。
(3)磷酸盐:
磷酸是三元酸,对应的盐有正盐和酸式盐: .


定义:

元素的性质随原子序数的递增而呈现周期性变化的规律叫元素周期律。

实质:

元素性质随原子序数递增呈现周期性变化是元素原子的核外电子排布周期性变化的必然结果。

元素周期表中主族元素性质递变规律:




金属性强弱的判断依据:

 1.单质跟水或酸反应置换出氢的难易程度(或反应的剧烈程度):反应越容易,说明其金属性越强。
2.最高价氧化物对应水化物的碱性强弱:碱性越强,说明其金属性越强,反之则越弱。
3.金属间的置换反应:依据氧化还原反应的规律,金属甲能从金属乙的盐溶液里置换出乙,说明甲的金属性比乙强。
4.金属活动性顺序按 Au顺序,金属性逐渐减弱。
5.元素周期表中,同周期元素从左至右金属性逐渐减弱;同主族元素从上至下金属性逐渐增强。
6.原电池中的正负极:一般情况下,活泼金属作负极。
7.金属阳离子氧化性的强弱:阳离子的氧化性越强.对应金属的金属性就越弱。

非金属性强弱的判断依据:
 
1.同周期元素,从左到右,随核电荷数的增加,非金属性增强;同主族元素,从上到下,随着陔电荷数的增加,非金属性减弱。
2.最高价氧化物对应水化物的酸性强弱:酸性越强,其元素的非金属性也越强,反之则越弱。
3.气态氢化物的稳定性:稳定性越强,非金属性越强。
4.单质跟氢气化合的难易程度:越易与H2反应,说明其非金属性越强。
5.与盐溶液之间的置换反应:非金属元素甲的单质能从非金属乙的盐溶液中置换出乙,说明甲的非金属性比乙强。如,说明溴的非金属性比碘强。
6.相互化合后的价态:如,说明O 的非金属性强于S。
7.其他:如CuCl2,所以C1的非金属性强于S。 

微粒半径大小的比较方法:

1.同周期元素的微粒
同周期元素的原子或最高价阳离子半径随核电荷数增大而减小(稀有气体元素除外),如半径:Na>Mg >Al,Na+>Mg2+‘>Al3+
2.同主族元素的微粒
同主族元素的原子或离子半径随核电荷数增大而增大,如半径:
3.电子层结构相同的微粒电子层结构相同(核外电子排布相同)的微粒半径随核电荷数的增加而减小,如半径:(上一周期元素形成的阴离子与下一周期元素形成的最高价阳离子有此规律)。 
4.同种元素形成的微粒同种元素原子形成的微粒半径大小为:阳离子< 中性原子<阴离子;价态越高的微粒半径越小,如半径:
5.核外电子数和核电荷数都不同的微粒可通过一种参照物进行比较,如比较的半径大小,可找出与A13+电子数相同,与S同主族的氧元素的阴离子进行比较,半径:,且


元素周期表中的几项重要规律相等规律:

规律 内容
相等规律 ①周期数:电子层数
②主族元素原子的最外层电子数=价电子数=主族序数=最高正化合价(F、 0除外)
③最低负价绝对值=8一主族序数(限 ⅣA族~ⅦA族非金属元素)
“位、构、性”规律
 递变规律
同周期从左到右,元素的金属性逐渐减弱,非金属性逐渐增强同主族从上到下,元素的金属性逐渐增强,非金属性逐渐减弱
奇偶规律 在同一主族内,族序数和原子序数、核内质子数、核电荷数、核外电子数、最外层电子数(价电子数)、离子的电荷数、元素的主要正负化合价数等,若一个是偶数,其他的都是偶数,若一个是奇数,其他的都是奇数
相同电子层结构的规律 稀有气体元素的原子与同周期非金属元素的阴离子以及下一周期主族金属元素的阳离子具有相同的电子层结构
序差规律 ①同主族相邻元素的原子序数之差与主族序数有关。IA~ⅡA族元素相差原子序数较小的元素所在周期包含的元素种数。ⅢA族~O族元素相差原子序数较大的元素所在周期包含的元素种数。如Na和K的原子序数相差8 (第三周期含8种元素),Cl和Br的原子序数相差18(第四周期含18种元素)
②同周期主族元素(长周期)的原子序数差:两元素分布在过渡元素同侧时,原子序数差=族序数差;两元素分布在过渡元素两侧时,第四或第五周期元素原子序数差=族序数差+10(如第四周期的Ca和Ca相差11),第六、七周期元素原子序数差=族序数差+24(如ⅡA 族的Ba和ⅢA族的Tl相差25)
 对角线相似规律 周期表中位于对角线位置的元素性质相似,尤以“和Mg、Be和Al最为典型


共价键:

1.本质原子之间形成共用电子对(或电子云重叠),使得电子出现在核间的概率增大。
2.特征
具有方向性与饱和性。
(1)共价键的饱和性一个原子中的一个未成对电子与另一个原子中的一个未成对电子配对成键后,一般来说就不能再与其他原子的未成对电子配对成键了,即每个原子所能形成共价键的总数或以单键连接的原子数目是一定的,这称为共价键的饱和性。
例如,氯原子中只有一个未成对电子,所以两个氯原子之间可以形成一个共价键,结合成氯分子,表示为氮原子中有三个未成对电子,两个氮原子之间能够以共价三键结合成氮分子,表示为一个氮原子也可与_二个氢原子以三个共价键结合成氨分子,表示为
(2)共价键的方向性
共价键将尽可能沿着电子出现概率最大的方向形成,这就是共价键的方向性。除s轨道是球形对称外,其他原子轨道都具有一定的空间分布。在形成共价键时,原子轨道重叠得越多,电子在核间出现的概率越大,所形成的共价键就越牢固。
例如,硫原子的价电子排布是有两个未成对电子,如果它们分布在互相垂直的轨道中,那么当硫原子和氢原子结合生成硫化氢分子时,一个氢原子的1s轨道上的电子能与硫原子的轨道上的电子配对成键,另一个氢原子的1s轨道上的电子只能与硫原子的轨道上的电子配对成键。
说明:
①共价键的饱和性决定着各种原子形成分子时相互结合的数量关系。如一个氢分子只能由两个氢原子构成,一个水分子只能由两个氢原子和一个氧原子构成。
②共价键的方向性决定着分子的空间构型。
3.分类
(1)按成键原子是否相同或共用电子对是否偏移分

(2)按成键方式分


(3)按共用电子对数分


离子键和共价键:

 


定义:

在一定温度下,可逆反应无论从正反应开始,还是从逆反应开始,也不管反应物起始浓度大小,最后都达到平衡,这时各生成物浓度的化学计量数次幂的乘积除以各反应物浓度的化学计量数次幂的乘积所得的比值是个常数,用K表示,这个常数叫化学平衡常数。

化学表平衡达式:

对于可逆反应mA(g)+nB(g)pC(g)+qD(g)来说,化学平衡表达式:
化学平衡常数的意义:

①表示该反应在一定温度下,达到平衡时进行的程度,K值越大,正反应进行的越彻底,对反应物而言转化率越高。
②某一温度下的K′与K比较能够判断反应进行的方向
K′>K,反应正向进行;K′<K,反应逆向进行;K′=K,反应处于平衡状态
(3)化学平衡常数与浓度、压强、催化剂无关,与温度有关,在使用时必须指明温度。
(4)在计算平衡常数时,必须是平衡状态时的浓度。
(5)对于固体或纯液体而言,其浓度为定值,可以不列入其中。
(6)化学平衡常数是指某一具体反应的平衡常数,若反应方向改变,则平衡常数改变,且互为倒数关系。如:在一定温度下,



化学平衡常数的应用:

1.K值越大,说明平衡体系中生成物所占的比例越大,正向反应进行的程度越大,反应物转化率越大;反之,正向反应进行的程度就越小,反应物转化率就越小,即平衡常数的大小可以衡量反应进行的程度,判断平衡移动的方向,进行平衡的相关计算。
2.若用浓度商(任意状态的生成物浓度幂之积与反应物浓度幂之积的比值,符号为Qc)与K比较,可判断可逆反应是否达到平衡状态和反应进行的方向。
3.利用K值可判断反应的热效应若升高温度,K值增大,则正反应为吸热反应;若升高温度,K值减小,则正反应为放热反应。
4.计算转化率及浓度依据起始浓度(或平衡浓度)和平衡常数可以计算平衡浓度(或起始浓度),从而计算反应物的转化率。
发现相似题
与“单质碘与红磷在常温下混合不反应,但滴入几滴水后能剧烈反应...”考查相似的试题有: