返回

高中三年级生物

首页
  • 读图填空题
    染色质是由DNA、组蛋白和非组蛋白等成分组成的。为了探究非组蛋白在转录中的作用,科学家从一只兔的体内分别取出胸腺细胞和骨髓细胞的染色质进行分离重组实验(如图。注:试管内满足RNA合成的有关条件)。

    (1)兔的胸腺细胞和骨髓细胞都是由最初的_____________通过细胞分裂和细胞分化产生的,其形态和功能不同的根本原因是_____________。
    (2)试管内“满足RNA合成的有关条件”主要是指_____________。
    (3)本实验的设计思路是______________。
    (4)本实验的结果说明了________________。
    本题信息:2011年陕西省模拟题生物读图填空题难度较难 来源:姚瑶
  • 本题答案
    查看答案
本试题 “染色质是由DNA、组蛋白和非组蛋白等成分组成的。为了探究非组蛋白在转录中的作用,科学家从一只兔的体内分别取出胸腺细胞和骨髓细胞的染色质进行分离重组实验...” 主要考查您对

细胞的分化

遗传信息的转录

遗传信息的翻译

科学研究方法

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 细胞的分化
  • 遗传信息的转录
  • 遗传信息的翻译
  • 科学研究方法

细胞的分化及其意义:

1、细胞的分化的概念:在个体发育中,相同细胞的后代,在形态、结构和生理功能上发生稳定性差异的过程。
2、细胞分化的基础和实质
(1)分化的基础:每个细胞都含有一套与受精卵完全相同的染色体,即携带有本物种的全部遗传信息。
(2)分化的实质:是在遗传物质的控制下合成特异性蛋白质的过程,即基因的选择性表达。
3、细胞分化的过程
(1)从细胞水平分析:细胞形态、结构和功能改变的结果。
(2)从亚显微结构水平分析:细胞器的数目及细胞质基质成分和功能改变的结果。
(3)从分子水平分析
①蛋白质角度:蛋白质种类、数量、功能改变的结果。
②基因角度:基因选择性表达的结果,这是细胞分化的根本原因。
4、细胞分化的特点
(1)持久性:细胞分化贯穿于生物体整个生命历程中,在胚胎期达到最大限度。
(2)不可逆性:一般来说,分化了的细胞将一直保持分化后的状态,直到死亡。
(3)普遍性:是生物界中普遍存在的生命现象,是生物个体发育的基础。
(4)遗传物质不变性:细胞分化是伴随着细胞分裂进行的,亲代与子代细胞的形态、结构或功能发生改变,但细胞内的遗传物质却不变。
5、细胞分化的结果:形成形态、结构和功能不同的组织和器官。
6、细胞分化的意义
(1)细胞分化是生物界普遍存在的生命现象,是生物个体发育的基础。
(2)细胞分化使多细胞生物体内的细胞趋向专门化,有利于提高各种生物功能的效率。


 


细胞增殖与细胞分化的区别分析:

细胞增殖 细胞分化
细胞变化 数量增多 细胞形态、结构、生埋功能发生了稳定性差异,且这种差异是不可逆转的
发生时间 从受精卵开始,有些部位的细胞终生保持分裂能力,有的细胞发育到一定时期停止分裂 持久性变化,胚胎时期达最大限度
在个体发育中的意义 保持了亲代和子代间遗传物质的稳定性 没有细胞分化,生物体不能进行正常发育

细胞分化与细胞全能性的区别与联系:

细胞分化 细胞全能性
原理 细胞内基因的选择性表达 含本物种全套遗传物质
特点 持久性、不可逆性、普遍性 ①高度分化的植物体细胞表达全能性需要一定的条件;②动物已分化的体细胞的全能性受到限制,但细胞核仍具有全能性
结果 形成形态、结构、生理功能不同的细胞 形成新个体
 大小比较 细胞分化程度有高低之分,如体细胞>生殖细胞>受精卵  细胞全能性有大小之分,如受精卵>生殖细胞>体细胞
关系 ①两者的遗传物质都不发生变化 ②细胞的分化程度越高,全能性越小


知识点拨:

1、过程:受精卵→增殖为多细胞→分化为组织、器官、系统→发育为生物体
2、细胞分化程度由高至低的顺序是神经组织干细胞、骨髓造血干细胞、胚胎干细胞;造血干细胞还有可能分化成为其他组织的细胞,说明动物细胞也可能具有全能性,因为每个细胞都是由受精卵发育而来的,都具有全套的遗传物质。人们对干细胞的研究,可以对某些疾病进行治疗,可以进行医学上的组织修复,还可以帮助人们了解细胞的分化机制。


知识拓展:

1、细胞的分裂是细胞分化的基础。细胞的分裂与分化往往是相伴相随的,随着细胞分化程度的加深,细胞的分裂能力逐渐下降。
2、细胞分裂结束后,细胞生活有三种状态:一是继续分裂增殖,如根尖分生区细胞;二是暂不分裂增殖,如植株上受顶芽抑制的侧芽细胞;三是不再进入细胞周期而发生分化,如人体的红细胞、神经细胞等。 3、判断细胞全能性的表达与细胞分化的依据是二者的终点不同,细胞分化的终点是组织、器官;细胞全能性表达的终点是完整个体。
4、植物细胞的全能性易表现,动物细胞的全能性受限制,但动物细胞的细胞核仍具有全能性。
5、细胞全能性高低与分化的关系:细胞全能性高低与分化程度成负相关,分化程度越大,全能性越低。
6、管家基因与奢侈基因
(1)管家基因指所有细胞均要表达的一类基因,其产物是维持细胞基本生命活动所必需的,如呼吸酶基因。
(2)奢侈基因是指不同类型细胞特异性表达的基因,其严物赋予不同细胞特异的生理功能,如血红蛋白基因、胰岛素基因。
遗传信息的转录:

1、概念:在细胞核内,以DNA一条链为模板,按照碱基互补配对原则,合成RNA的过程。
 2、转录
(1)场所:细胞核(主要)
(2)模板:DNA片段(基因)的一条链
(3)原料:四种游离的核糖核苷酸
(4)酶:RNA聚合酶等
(5)过程
第一步:DNA双链解开,碱基暴露出来。
第二步:游离的核糖核苷酸随机地与DNA链上的碱基碰撞,当核糖核苷酸与DNA的碱基互补时,两者以氢键结合。
第三步:新结合的核糖核苷酸连接到正在合成的 mRNA上。
第四步:合成的mRNA从DNA上释放,而后DNA 双链恢复。
(6)产物:RNA
转录和复制的比较:

  复制 转录 
场所 主要在细胞和内
解旋 完全解旋 只解有遗传效应的片段
模板 亲代DNA的两条链均为模板 DNA的一条链上的某片段为模板
解旋酶、DNA聚合酶等 解旋酶、RNA聚合酶等
能量 ATP
原则 A-T、G-C A-U、G-C
原料 四种脱氧核苷酸 四种核糖核苷酸
产物 两个子代DNA 信息RNA


RNA与DNA的区别:

种类 DNA(脱氧核糖核酸) RNA(核糖核酸)
组成成分 五碳糖 脱氧核糖 核糖
磷酸 磷酸
碱基 A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)
T(胸腺嘧啶) U(尿嘧啶)
基本单位 脱氧核苷酸(4种) 核糖核苷酸(4种)
结构 规则的双螺旋结构 常呈单链结构
分布 主要分布在细胞核内的染色体上,在线粒体和叶绿体上 主要分布在细胞质中
功能 传递和表达遗传信息 mRNA:翻译的模板
tRNA:识别密码子,运输特定氨基酸
rRNA:构成核糖体

知识点拨:

1、RNA的组成与分类
(1)基本单位:核糖核苷酸。
(2)组成成分

(3)特点
①一般是单链,长度比DNA短。
②能通过核孔从细胞核转移到细胞质中。
4.RNA的种类、作用及结构
mRNA tRNA rRNA
分布部位 常与核糖体结合 细胞质中 与蛋白质结合形成核糖体
特点 带有从DNA上转录下来的遗传信息 一端能与氨基酸结合,另一端有反密码子与mRNA上遗传密码子配对 由核仁组织区的DNA转录而来,是核糖体的组成物质
功能 翻译时作模板 翻译时识别密码子和搬运氨基酸 参与构成合成蛋白质的场所
结构 单链 单链,常有部分碱基配对,形成三叶草型结构 单链
共同点 ┃①都是经转录产生;②基本组成单位相同;③都与翻译过程有关
5、DNA、RNA中核苷酸成分比较
①一定相同的成分:磷酸。
②一定不同的成分:五碳糖。
③可能相同可能不同的成分:含氮碱基(A、U、T、 G、C)。

遗传信息的翻译:

1、概念:在细胞质中,以信使RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。
2、密码子:mRNA上3个相邻的碱基决定1个氨基酸,这样的3个碱基成为1个密码子。
3、反密码子:tRNA上与mRNA上密码子互补配对的3个碱基。
4、tRNA:翻译过程中,将游离氨基酸运到核糖体上的RNA。
5、翻译
(1)场所:细胞质中的核糖体(主要)
(2)模板:mRNA
(3)原料:20种氨基酸
(4)碱基与氨基酸之间的关系:3个碱基(1个密码子)决定一个氨基酸
(5)搬运工:tRNA(有反密码子)
(6)过程
第一步:mRNA进入细胞质与核糖俸结合,携带甲硫氨酸的tRNA通过与密码子AUC配对进入位点1。
第二步:携带另一种氨基酸的tRNA以同样的方式进入位点2。
第三步:甲硫氨酸与另一种氨基酸形成肽键而转移到位点2上的tRNA上。
第四步:核糖体移动到下一个密码子,原来占据位点1的tRNA离开核糖体,占据位点2的tRNA进入到位点1,一个新的携带氨基酸的tRNA进入位点2,继续肽链的合成。重复步骤二、三、四,直到核糖体读取 mRNA的终止密码后,合成才停止。肽链合成后,被运送到各自的“岗位”,盘曲折叠成具有特定空间结构和功能的蛋白质,承担各项职责。
(7)产物:多肽(蛋白质)
遗传信息、密码子与反密码子:

遗传信息 密码子 反密码子
存在位置 在DNA上,是基因中脱氧核苷酸的排列顺序 在tRNA上,是与mRNA上决定1个氨基酸的3个相邻碱基 在RNA上,是与密码子互补配对的3个碱基
作用 决定氨基酸的排列顺序,是间接作用 直接决定蛋白质分子中氨基酸的排列顺序 识别密码子
对应关系
联系 ①遗传信息是基因中脱氧核苷酸的排列顺序,通过转录,便遗传信息传递到mRNA的核糖核苷酸的排列顺序上
②mRNA的密码子直接决定蛋白质分子中氨基酸的排列顺序,反密码子则起到识别密码子的作用
注:1、对于以RNA为遗传物质的病毒来说,遗传信息贮存在RNA中。
2、密码子共有64种,但有3种为终止密码子;对应氨基酸的密码子有61种,所有生物共用一套遗传密码。
3、tRNA上反密码子所含的碱基有3个,但整个tRNA不止3个碱基。


知识拓展:

1、DNA在细胞核内,合成蛋白质的核糖体在细胞质中,遗传信息传递如何克服空间上的隔离?
[提示]DNA在细胞核内转录出mRNA,mRNA 携带遗传信息由细胞核经核孔进入细胞质,在核糖体上翻译出肽链,盘曲折叠形成蛋白质。
2、如何在短时间内由一条mRNA合成多个相同的蛋白质?
[提示]-条mRNA与多个核糖体结合,形成多聚核糖体,这样一条mRNA就可在短时间内翻译出多条肽链。

科学研究方法:

1、假说——演绎法
①提出假设
②演绎就是推理
③实验验证假设和推理
④得出结论
2、同位素示踪法:同位素示踪法是利用放射性核素或稀有稳定核素作为示踪剂对研究对象进行标记的微量分析方法
3、科学的研究方法包括:归纳法、类比推理法、实验法和演绎法。
①归纳法:是从个别性知识,引出一般性知识的推理,是由已知真的前提,引出可能真的结论。它把特性或关系归结到基于对特殊的代表(token)的有限观察的类型;或公式表达基于对反复再现的现象的模式(pattern)的有限观察的规律。
②类比推理法:类比推理这是科学研究中常用的方法之一。类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理。简称类推、类比。它是以关于两个事物某些属性相同的判断为前提,推出两个事物的其他属性相同的结论的推理。
③实验法:通过试验的论证得出所需数据,进行分析后得出结论。分为:化学物质的检测方法;实验结果的显示方法;实验条件的控制方法;实验中控制温度的方法
④演绎法:从普遍性结论或一般性事理推导出个别性结论的论证方法。演绎法得出的结论正确与否,有待于实践检验。它只能从逻辑上保证其结论的有效性,而不能从内容上确保其结论的真理性。也可以从逻辑思维,逆向思维和想象思维延伸到其结论该以反证明。
4、实验必须遵守的原则:
①设置对照原则:空白对照;条件对照;相互对照;自身对照。
②单一变量原则;
③平行重复原则
5、实验的特性:对照,统一性质。提出问题;设计方案;讨论结果;分析问题。分为科学实验;验证性实验;对照实验等。
知识拓展:

1、生物学的历史研究进展和相关实验的叙述。
(1)孟德尔的假说——演绎法叙述
①提出假设(如孟德尔根据亲本杂交实验,得到F1,Aa这对基因是独立的,在产生配子时相互分离。这里假设的是一对等位基因的情况);
②演绎就是推理(如果这个假说是正确的,这样F1会产生两种数量相等的配子,这样测交后代应该会产生两种数量相等的类型);
③最后实验验证假设和推理(测交实验验证,结果确实产生了两种数量相等的类型);
④最后得出结论(就是分离定律)
(2)遗传物质验证的三个实验:肺炎双球菌的转化实验;噬菌体侵染细菌的实验;烟草花叶病毒的重组实验
(3)酶发现过程中的实验:
①1777年,苏格兰医生史蒂文斯从胃里分离一种液体(胃液),并证明了食物的分解过程可以在体外进行。
②1834年,德国博物学家施旺把氯化汞加到胃液里,沉淀出一种白色粉末。除去粉末中的汞化合物,把剩下的粉末溶解,得到了一种浓度非常高的消化液,他把这粉末叫作“胃蛋白酶”(希腊语中的消化之意)。同时,两位法国化学家帕扬和佩索菲发现,麦芽提取物中有一种物质,能使淀粉变成糖,变化的速度超过了酸的作用,他们称这种物质为“淀粉酶制剂”(希腊语的“分离”)。科学家们把酵母细胞一类的活动体酵素和像胃蛋白酶一类的非活体酵素作了明确的区分。
③1878年,德国生理学家库恩提出把后者叫作“酶”。
④1897年,德国化学家毕希纳用砂粒研磨酵细胞,把所有的细胞全部研碎,并成功地提取出一种液体。他发现,这种液体依然能够像酵母细胞一样完成发酵任务。这个实验证明了活体酵素与非活体酵素的功能是一样的。因此,“酶”这个词现在适用于所有的酵素,而且是使生化反应的催化剂。由于这项发现,毕希纳获得了1907年诺贝尔化学奖
(4)生长素的发现实验:植物的向光生长和胚芽鞘实验
2、同位素示踪方法的应用,使人们可以从分子水平动态地观察生物体内或细胞内生理、生化过程,认识生命活动的物质基础。例如,用C、O等同位素研究光合作用,可以详细地阐明叶绿素如何利用二氧化碳和水,什么是从这些简单分子形成糖类等大分子的中间物,以及影响每步生物合成反应的条件等。
3、放射性同位素示踪技术,是分子生物学研究中的重要手段之一,对蛋白质生物合成的研究,从DNA复制、RNA转录到蛋白质翻译均起了很大的作用。最近邻序列分析法应用同位素示踪技术结合酶切理论和统计学理论,研究证实了DNA分子中碱基排列规律,在体外作合成DNA的实验:分四批进行,每批用一种不同的32P标记脱氧核苷三磷酸,32P标记在戊糖5'C的位置上,在完全条件下合成后,用特定的酶打开5'C-P键,使原碱基上通过戊糖5'C相连的32P移到最邻近的另一单核苷酸的3'C上。用最近邻序列分析法首次提出了DNA复制与RNA转录的分子生物学基础,从而建立了分子杂交技术,例如以噬体T2-DNA为模板制成[32P]RNA,取一定量T2-DNA和其它一些DNA加入此[32P]RNA中,经加热使DNA双链打开,并温育,用密度梯度离心或微孔膜分离出DNA-[32P]RNA复合体测其放射性,实验结果只有菌体T2的DNA能与该[32P]RNA形成放射性复合体。从而证明了RNA与DNA模板的碱基呈特殊配对的互补关系,用分子杂交技术还证实了从RNA到DNA的逆转录现象。
4、放射性同位素示踪技术对分子生物学的贡献还表现在:
a、对蛋白质合成过程中三个连续阶段,即肽链的起始、延伸和终止的研究;
b、核酸的分离和纯化;
c、核酸末端核苷酸分析,序列测定;
d、核酸结构与功能的关系;
e、RNA中的遗传信息如何通过核苷酸的排列顺序向蛋质中氨基酸传递的研究等等。
为了更好地应用放射性同位素示踪技术,除了有赖于示踪剂的高质量和核探测器的高灵敏度外,关键还在于有科学根据的设想和创造性的实验设计以及各种新技术的综合应用。

发现相似题
与“染色质是由DNA、组蛋白和非组蛋白等成分组成的。为了探究非组...”考查相似的试题有: