返回

高中物理

首页
  • 单选题
    如图所示,Q1和Q2是在真空中固定的两个等量同种点电荷,O点为两电荷连线的中点,A和B是连线上关于O点对称的两点.一电子从A点由静止开始运动,运动中仅受电场力作用,电子将以O点为中心在A、B之间来回往复运动.关于这一现象下面说法中正确的是(  )
    A.Q1和Q2都带正电
    B.电子在O点的速度最大
    C.电子在A、B之间各点所受电场力大小不变
    D.电子在A、B之间运动过程中机械能守恒
    魔方格

    本题信息:2006年红桥区模拟物理单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “如图所示,Q1和Q2是在真空中固定的两个等量同种点电荷,O点为两电荷连线的中点,A和B是连线上关于O点对称的两点.一电子从A点由静止开始运动,运动中仅受电场...” 主要考查您对

机械能守恒定律

库仑定律

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 机械能守恒定律
  • 库仑定律
机械能守恒定律:

1、内容:只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变。
2、表达式:

3.条件
机械能守恒的条件是:只有重力或弹力做功。可以从以下三个方面理解:
(1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒。
(2)受其他力,但其他力不做功,只有重力或弹力做功。例如物体沿光滑的曲面下滑,受重力、曲面的支持力的作用,但曲面的支持力不做功,物体的机械能守恒。
(3)其他力做功,但做功的代数和为零。

判定机械能守恒的方法:

 (1)条件分析法:应用系统机械能守恒的条件进行分析。分析物体或系统的受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力 (或弹力)做功,没有其他力做功或其他力做功的代数和为零,则系统的机械能守恒。
(2)能量转化分析法:从能量转化的角度进行分析:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能(如内能),则系统的机械能守恒。
(3)增减情况分析法:直接从机械能的各种形式的能量的增减情况进行分析。若系统的动能与势能均增加或均减少,则系统的机械能不守恒;若系统的动能不变,而势能发生了变化,或系统的势能不变,而动能发生了变化,则系统的机械能不守恒;若系统内各个物体的机械能均增加或均减少,则系统的机械能不守恒。
(4)对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒。

竖直平面内圆周运动与机械能守恒问题的解法:

在自然界中,违背能量守恒的过程肯定是不能够发生的,而不违背能量守恒的过程也不一定能够发生,因为一个过程的进行要受到多种因素的制约,能量守恒只是这个过程发生的一个必要条件。如在竖直平面内的变速圆周运动模型中,无支撑物的情况下,物体要到达圆周的最高点,从能量角度来看,要求物体在最低点动能不小于最高点与最低点的重力势能差值。但只满足此条件物体并不一定能沿圆弧轨道运动到圆弧最高点。因为在沿圆弧轨道运动时还需满足动力学条件:所需向心力不小于重力,由此可以推知,在物体从圆弧轨道最低点开始运动时,若在动能全部转化为重力势能时所能上升的高度满足时,物体可在轨道上速度减小到零,即动能可全部转化为重力势能;在,物体上升到圆周最高点时的速度)时,物体可做完整的圆周运动;若在时,物体将在与圆心等高的位置与圆周最高点之间某处脱离轨道,之后物体做斜上抛运动,到达最高点时速度不为零,动能不能全部转化为重力势能,物体实际上升的高度满足。故在解决这类问题时不能单从能量守恒的角度来考虑。


库仑定律:



“割补”法处理非点电荷间的静电力问题:

在应用库仑定律解题时,由于其适用条件是点电荷,所以造成了一些非点电荷问题的求解困难,对于环形或球形缺口问题,“割补法”非常有效。所谓“割”是指将带电体微元化,再利用对称性将带电体各部分所受电场力进行矢量合成。所谓“补”是将缺口部分先补上,使带电体能作为点电荷来处理。

静电力作用的平衡与运动类问题的解法:

带电体在静电力参与下的运动,从运动轨迹来看可以有直线运动、曲线运动;从运动性质来看可以是匀变速运动,也可以是变加速运动;从参与运动的研究对象来看可以是单一的物体,也可以是多物体组成的系统等。物体或者系统在静电力作用下处于平衡状态或某种形式的运动时,解决思路与力学中同类问题的解决思路相同,仍需选定研究对象后进行受力分析,再利用平衡条件或牛顿运动定律列方程求解。但需注意库仑力的特点,特别是在动态平衡问题、运动问题中,带电体间距离发生变化时,库仑力也要发生变化,要分析力与运动的相互影响。整体法与隔离法是解决连接体问题的有效方法,在通过静电力联系在一起的系统,也要注意考虑整体法与隔离法的选择。


知识拓展:

三个点电荷在相互间作用力作用下处于平衡时的规律
规律一:三个点电荷的位置关系是“同性在两边,异性在中间”:如果三个点电荷只在库仑力的作用下能够处于平衡状态,则这三个点电荷一定处于同一直线上,且有两个是同性电荷,一个是异性电荷,两个同性电荷分别在异性电荷的两边。
规律二:中间的电荷所带电荷量是三个点电荷中电荷量最小的;两边同性电荷谁的电荷量小,中间异性电荷就距谁近一些.
证明:如图所示,甲、乙、丙三个点电荷处于平衡状态,它们的电荷量分别为甲与乙、乙与丙之间的距离分别为为正电荷,则为负电荷。由公式F=qE知,三个电荷能够处于平衡状态,说明甲、乙、丙三个电荷所在处的合场强为0。

乙、丙两点电荷在甲处产生的场强分别为
两场强在甲处大小相等,方向相反,合场强等于零,故,由此式可知同理可证
规律三:三个点电荷的电荷量满足

证明:三个点电荷能够同时处于平衡状态,则三个点电荷之间的库仑力相等,即


整理该式易得

联立两式得
三个自由电荷都处于平衡状态时,则口诀概括为 “三点共线,两同夹异(同性在两边,异性在中间),两大夹小,近小远大,高考不怕”。由此可以迅速、准确地确定三个电荷的相对位置及电性。


发现相似题
与“如图所示,Q1和Q2是在真空中固定的两个等量同种点电荷,O点为...”考查相似的试题有: