返回

高中三年级物理

首页
  • 计算题
    飞行时间质谱仪可以根据带电粒子的飞行时间对气体分子进行分析。如图所示,在真空状态下,自脉冲阀P喷出微量气体,经激光照射产生不同正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的方形区域,然后到达紧靠在其右侧的探测器。已知极板a、b间的电压为U0,间距为d,极板M、N的长度和间距均为L。不计离子重力及经过a板时的初速度。
    (1)若M、N板间无电场和磁场,请推导出离子从a板到探测器的飞行时间t与比荷k(k=,q和m分别为离子的电荷量和质量)的关系式;
    (2)若在M、N间只加上偏转电压U1,请论证说明不同正离子的轨迹是否重合;
    (3)若在M、N间只加上垂直于纸面的匀强磁场。已知进入a、b间的正离子有一价和二价的两种,质量均为m,元电荷为e。要使所有正离子均能通过方形区域从右侧飞出,求所加磁场的磁感应强度的最大值Bm

    本题信息:2012年北京市模拟题物理计算题难度极难 来源:马凤侠
  • 本题答案
    查看答案
本试题 “飞行时间质谱仪可以根据带电粒子的飞行时间对气体分子进行分析。如图所示,在真空状态下,自脉冲阀P喷出微量气体,经激光照射产生不同正离子,自a板小孔进入a...” 主要考查您对

带电粒子在电场中的加速

带电粒子在电场中的偏转

带电粒子在匀强磁场中的运动

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 带电粒子在电场中的加速
  • 带电粒子在电场中的偏转
  • 带电粒子在匀强磁场中的运动

带电粒子在电场中的直线运动:

 (1)如不计重力,电场力就是粒子所受合外力,粒子做直线运动时的要求有:
①对电场的要求:或是匀强电场,或不是匀强电场但电场的电场线有直线形状。
②对初始位置的要求:在匀强电场中任一点开始运动都可以,在非匀强电场中带电粒子的初始位置必须在直线形的电场线上。
③对初速度的要求:初速度或为零,或不为零但与所在的电场线共线。
(2)粒子在电场中做直线运动的处理方法有两种:
①将牛顿第二定律与运动学公式结合求解,这种方法只能用在匀强电场中。不考虑重力时,常用的基本方程有:
 等.
②由动能定理求解不涉及时间的问题,这种方法对匀强电场、非匀强电场均适用。不考虑重力时,基本方程为:

需要特别注意的是式中U是质点运动中所经历的始末位置之间的电势差,而不一定等于题目中给定的电压,如带电粒子从电压为U的两板中点运动到某一极板上时,经历的电压仅是


带电粒子在匀强电场中的偏转:

(1)运动状态分析:带电粒子以速度v0沿垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向垂直的电场力作用而做匀变速曲线运动,如图所示。

(2)处理方法:类似于平抛运动的处理,应用运动的合成与分解的方法。沿初速度方向上做速度为v0的匀速直线运动,垂直于初速度方向上做初速度为零的匀加速直线运动。
(3)所涉及的方程及结论
①加速度
②运动时间
a.能飞出极板间时,
b.打在极板上时,
③侧移量
a.离开电场时,
结合加速电场U0时,由即先加速再偏转时侧移量与粒子的比荷无关:
b.打在极板上时,此时
④偏转角

结合加速电场时,由
即先加速再偏转时偏转角也与粒子的比荷无关。另外,当粒子飞出极板间时,结合tanθ与y的表达式有:
即粒子飞出偏转电场时,速度反向延长线交水平位移的中点l/2处,粒子就像是从极板间l/2处沿直线射出一样。


带电粒子在匀强磁场中的运动形式:


电偏转与磁偏转的对比:





关于角度的两个结论:

(1)粒子速度的偏向角φ等于圆心角α,并等于AB弦与切线的弦切角θ的2倍(如图所示),即

(2)相对的弦切角θ相等,与相邻的弦切角θ'互补,即

有界磁场中的对称及临界问题:

(1)直线边界
粒子进出磁场时的速度关于磁场边界对称.如图所示。

(2)圆形边界
①沿半径方向射入磁场,必沿半径方向射出磁场。
②射入磁场的速度方向与所在半径间夹角等于射出磁场的速度方向与所在半径间的夹角。

(3)平行边界
存在着临界条件:

(4)相交直边界


带电粒子在匀强磁场中的匀速圆周运动:



确定轨迹圆心位置的方法:





带电粒子在磁场中做圆周运动时间和转过圆心角的求解方法:



带电粒子在有界磁场中的临界与极值问题的解法:

当某种物理现象变化为另一种物理现象,或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折态通常称为临界状态,涉及临界状态的物理问题叫做临界问题,产生临界状态的条件叫做临界条件,临界问题能有效地考查学生多方面的能力,在高考题中屡见不鲜。认真分析系统所经历的物理过程,找出与临界状态相对应的临界条件,是解答这类题目的关键,寻找临界条件,方法之一是从最大静摩擦力、极限频率、临界角、临界温度等具有临界含义的物理量及相关规律人手:方法之二是以题目叙述中的一些特殊词语如“恰好”、“刚好”、“最大”、“最高”、“至少”为突破口,挖掘隐含条件,探求临界位置或状态。如:
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。据此可以确定速度、磁感应强度、轨迹半径、磁场区域面积等方面的极值。
(2)当速度v一定时,弧长(或弦长)越大,圆周角越大,则带电粒子在有界磁场巾运动的时间越长。(前提条件是弧是劣弧)
(3)当速率v变化时,圆周角大的,运动时间越越长。

“动态圆”问题的解法:

 1.入射粒子不同具体地说当入射粒子的比荷不同时,粒子以相同的速度或以相同的动能沿相同的方向射人匀强磁场时,粒子在磁场中运动的周期必不相同;运动的轨迹半径,在以不同的速度入射时不相同,以相同动能入射时可能不同。
2.入射方向不同相同的粒子以相同的速率沿不同方向射人匀强磁场中,粒子在磁场中运动的轨道中,运动周期是相同的,但粒子运动径迹所在空间位置不同,所有粒子经过的空间区域在以入射点为圆心,运动轨迹圆的直径为半径的球形空间内。当磁场空间有界时,粒子在有界磁场内运动的时间不同,所能到达的最远位置不同,从而形成不同的临界状态或极值问题,此类问题中有两点要特别注意:一是旋转方向对运动的影响,二是运动中离入射点的最远距离不超过2R,因R是相同的,进而据此可利用来判定转过的圆心角度、运动时间等极值问题,其中l是最远点到入射点间距离即轨迹上的弦长。
3.入射速率不同
相同的粒子从同一点沿同一方向以不同的速率进入匀强磁场中,虽然不同速率的粒子运动半径不同,但圆心却在同一直线上,各轨迹圆都相切于入射点。在有界磁场中会形成相切、过定点等临界状态,运动时间、空间能到达的范围等极值问题。当粒子穿过通过入射点的直线边界时,粒子的速度方向相同,偏向角相同,运动时间也相同。
4.入射位置不同
相同的粒子以相同的速度从不同的位置射入同一匀强磁场中,粒子在磁场中运动的周期、半径都相同,但在有界磁场中,对应于同一边界上的不同位置,会造成粒子在磁场巾运动的时间不同,通过的路程不同,出射方向不同,从而形成不同的临界状态,小同的极值问题。
5.有界磁场的边界位置变化
相同粒子以相同的速度从同定的位置出发,途经有界磁场Ⅸ域,若磁场位置发生变化时,会引起粒子进入磁场时的入射位置或相对磁场的入射方向发生变化,从而可能引起粒子在磁场中运动时间、偏转角度、出射位置与方向等发生变化,进而形成临界与极值问题。


发现相似题
与“飞行时间质谱仪可以根据带电粒子的飞行时间对气体分子进行分...”考查相似的试题有: