返回

高中三年级数学

首页
  • 单选题
    已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是

    [     ]


    A.2
    B.2
    C.4
    D.2
    本题信息:2011年辽宁省月考题数学单选题难度一般 来源:张玲玲
  • 本题答案
    查看答案
本试题 “已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是[ ]A.2B.2C.4D.2” 主要考查您对

对数与对数运算

基本不等式及其应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 对数与对数运算
  • 基本不等式及其应用

对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记做,其中a叫做对数的底数,N叫做真数。
通常以10为底的对数叫做常用对数,记做
以无理数e=2.71828…为底的对数叫做自然对数,记做
由定义知负数和0没有对数。

常用对数
以10为底的对数叫做常用对数,

自然对数:
以e为底的对数叫做自然对数,e是无理数,e≈-2. 718 28,


对数的运算性质:

如果a>0,且a≠1,M>0,N>0,那么
(1)
(2)
(3)
(4)

对数的恒等式

(1);(2)
(3);(4)
(5)

对数的换底公式及其推论:

 


对数式的化简与求值

(1)化同底是对数式变形的首选方向,其中经常用到换底公式及其推论.
(2)结合对数定义,适时进行对数式与指数式的互化.
(3)利用对数运算法则,在积、商、幂的对数与对数的和、差、倍之间进行转化,


基本不等式:

(当且仅当a=b时取“=”号);
变式:①(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
;③;④


对基本不等式的理解:

(1)基本不等式的证明是利用重要不等式推导的,即,即有
(2)基本不等式又称为均值定理、均值不等式等,其中的算术平均数,的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.
(3)要特别注意不等式成立的条件和等号成立的条件.均值不等式中:①当a=b时取等号,即


对于两个正数x,y,若已知xy,x+y,中的某一个为定值,可求出其余各个的最值:
如:(1)当xy=P(定值),那么当x=y时,和x+y有最小值2
(2)x+y=S(定值),那么当x=y时,积xy有最大值
(3)已知x2+y2=p,则x+y有最大值为

应用基本的不等式解题时:

注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。

利用基本不等式比较实数大小:

(1)注意均值不等式的前提条件.
(2)通过加减项的方法配凑成使用均值定理的形式.
(3)注意“1”的代换.
(4)灵活变换基本不等式的形式,并注重其变形形式的运用.重要不等式的形式可以是,也可以是,还可以是等,不仅要掌握原来的形式,还要掌握它的几种变形形式以及公式的逆用等,以便应用.
(5)合理配组,反复应用均值不等式。 


基本不等式的几种变形公式: