返回

高中三年级数学

首页
  • 解答题
    已知不重合的两个点P(1,cosx),Q(cosx,1),O为坐标原点.
    (1)求夹角的余弦值f(x)的解析式及其值域;
    (2)求△OPQ的面积S(x),并求出其取最大值时,的值.
    本题信息:2012年江苏同步题数学解答题难度较难 来源:狄雪兰(高中数学)
  • 本题答案
    查看答案
本试题 “已知不重合的两个点P(1,cosx),Q(cosx,1),O为坐标原点.(1)求夹角的余弦值f(x)的解析式及其值域;(2)求△OPQ的面积S(x),并求出其取最大值时,...” 主要考查您对

函数的定义域、值域

函数解析式的求解及其常用方法

正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

用数量积表示两个向量的夹角

向量数量积的运算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的定义域、值域
  • 函数解析式的求解及其常用方法
  • 正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)
  • 用数量积表示两个向量的夹角
  • 向量数量积的运算

定义域、值域的概念:

自变量取值范围叫做函数的定义域,函数值的集合叫做函数的值域。


1、求函数定义域的常用方法有:

(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零等;
(2)根据实际问题的要求确定自变量的范围;
(3)根据相关解析式的定义域来确定所求函数自变量的范围;
(4)复合函数的定义域:如果y是u的函数,而u是x的函数,即y=f(u),u=g(x),那么y=f[g(x)]叫做函数f与g的复合函数,u叫做中间变量,设f(x)的定义域是x∈M,g(x)的定义域是x∈N,求y=f[g(x)]的定义域时,则只需求满足 的x的集合。设y=f[g(x)]的定义域为P,则  。

 3、求函数值域的方法:

(1)利用一些常见函数的单调性和值域,如一次函数,二次函数,反比例函数,指数函数,对数函数,三角函数,形如 (a,b为非零常数)的函数;
(2)利用函数的图象即数形结合的方法;
(3)利用均值不等式;
(4)利用判别式;
(5)利用换元法(如三角换元);
(6)分离法:分离常数与分离参数两种形式;
(7)利用复合函数的单调性。(注:二次函数在闭区间上的值域要特别注意对称轴与闭区间的位置关系,含字母时要注意讨论)


函数解析式的常用求解方法:

(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。


正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,

1.正弦函数

2.余弦函数

函数图像的性质
正弦、余弦函数图象的性质:

由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。




正弦、余弦函数图象的性质:


由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。


用数量积表示两个向量的夹角:

都是非零向量,,θ是的夹角,根据向量数量积的定义及坐标表示可得


向量数量积问题中方法提炼:

(1)平面向量的数量积的运算有两种形式,一是依据定义来计算,二是利用坐标来计算,具体应用哪种形式应根据已知条件的特征来选择;
(2)平面向量数量积的计算类似于多项式的运算,解题中要注意多项式运算方法的运用;
(3)平面向量数量积的计算中要注意平面向量基本定理的应用,选择合适的基底,以简化运算
(4)向量的数量积是一个数而不是一个向量。


两个向量数量积的含义:

如果两个非零向量,它们的夹角为,我们把数量叫做的数量积(或内积或点积),记作:,即
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。


数量积的的运算律:

已知向量和实数λ,下面(1)(2)(3)分别叫做交换律,数乘结合律,分配律。
(1)
(2)
(3)


向量数量积的性质:

设两个非零向量
(1)
(2)
(3)
(4)
(5)当同向时,;当反向时,;当为锐角时,为正且不同向,;当为钝角时,为负且不反向,