返回

高中一年级生物

首页
  • 读图填空题
    下图是科学家对果蝇正常染色体上部分基因的测序结果。请据图回答:

    (1)图1中的朱红眼基因与图2中的深红眼基因属于________基因。
    (2)图1染色体上所呈现的基因不一定能在后代中全部表达,主要原因是:
    ①.________________________。
    ②.________________________。
    (3)与图1相比,图2发生了________________________。
    本题信息:2010年福建省月考题生物读图填空题难度较难 来源:李静
  • 本题答案
    查看答案
本试题 “下图是科学家对果蝇正常染色体上部分基因的测序结果。请据图回答:(1)图1中的朱红眼基因与图2中的深红眼基因属于________基因。(2)图1染色体上所呈现的基因不...” 主要考查您对

基因的显性和隐性

基因与染色体的关系

基因、蛋白质和性状的关系

染色体变异

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 基因的显性和隐性
  • 基因与染色体的关系
  • 基因、蛋白质和性状的关系
  • 染色体变异
基因显隐性:

 (1)等位基因:
①存在:存在于杂合子的所有体细胞中。
②位置:位于一对同源染色体的同一位置上,
如图中的B和b、C和c。

③特点:能控制一对相对性状,具有一定的独立性。
④形成时间:受精卵形成时。
⑤分离的时间:减数第一次分裂后期。
⑥遗传行为:随同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代。
(2)相同基因:位于同源染色体的同一位置上,控制同一性状的基因,如上图中的A和A。
(3)显性基因:控制显性性状的基因,用大写英文字母表示。
(4)隐性基因:控制隐性性状的基因,用小写英文字母表示。
显隐性的判断与实验探究:

1.根据子代性状判断
(1)不同性状的亲本杂交子代只出现一种性状子代所出现的性状为显性性状。
(2)相同性状的亲本杂交子代出现不同性状子代所出现的新的性状为隐性性状。
2.根据子代性状分离比判断
具一对相对性状的亲本杂交子代性状分离比为3:1分离比占3/4的性状为显性性状。
3.遗传系谱图中的显隐性判断若双亲正常,子代有患者,则为隐性遗传病;若双亲患病,子代有正常者,则为显性遗传病。即无中生有为隐性,有中生无为显性。
知识点拨:

1、等位基因的根本区别在于其碱基排列顺序不同。
2、显隐性关系不是绝对的,生物体内在环境和所处的外界环境的改变都会影响显性性状的表现。
知识拓展:

分离定律的异常情况分析
1、不完全显性导致比例改变
(1)不完全显性:如红花AA、白花aa,若杂合子Aa 开粉红花,则AA×aa杂交再自交F2代性状比为红花:粉红花:白花=1:2:1,不再是3:1。
(2)当子代数目较少时,不一定符合预期的分离比。如两只杂合黑豚鼠杂交,生下的4只小豚鼠不一定符合3黑1白,有可能只有黑色或只有白色,也有可能既有黑色又有白色,甚至还可能3白1黑。
2、显性或隐性纯合致死导致比例改变
(1)若某一性状的个体自交总出现特定的比例 2:1,而非正常的3:1,则推断是显性纯合致死,并且显性性状的个体(存活的)有且只有一种基因型(Aa)。
(2)某些致死基因导致遗传分离比变化
①隐性致死:隐性基因纯合时,对个体有致死作用。如:镰刀型细胞贫血症(红细胞异常,使人死亡);植物中的白化基因纯合时,使植物不能形成叶绿素,从而不能进行光合作用而死亡。
②显性致死:显性基因具有致死作用,如人的神经胶质症(皮肤畸形生长,智力严重缺陷,出现多发性肿瘤等症状)基因。显性致死又分为显性纯合致死和显性杂合致死,若为显性纯合致死,杂合子自交后代显:隐 =2:1。
③配子致死:指致死基因在配子时期发生作用,从而不能形成有生活力的配子的现象。
3、某一基因型在雌、雄(或男、女)个体中表现型不同造成分离比异常。
例   原产于乌兹别克、土库曼、哈萨克等国的卡拉库尔羊以适应荒漠和半荒漠地区而深受牧民喜爱,卡拉库尔羊的长毛(B)对短毛(b)为显性,有角(H)对无角 (h)为显性,卡拉库尔羊毛色的银灰色(D)对黑色(d)为显性。三对等位基因独立遗传,请回答以下问题:
(1)现将多头纯种长毛羊与短毛羊杂交,产生的F1 代进行雌雄个体间交配产生F2代,将F2代中所有短毛羊除去,让剩余的长毛羊自由交配,理论上F3中短毛个体的比例为()。
(2)多头不同性别的基因型均为Hh的卡拉库尔羊交配,雄性卡拉库尔羊中无角此例为1/4,但雌性卡拉库尔羊中无角比例为3/4,你能解释这个现象吗?
(3)银灰色的卡拉库尔羊皮质量非常高,牧民让银灰色的卡拉库尔羊自由交配,但发现每一代中总会出现约1/3的黑色卡拉库尔羊,其余均为银灰色,试分析产生这种现象的原因?
思路点拨:
(1)F2中的基因型应为l/4BB、 2/4Bb、1/4bb,当除去全部短毛后,所有长毛基因型应为1/3BB、2/3Bb,让这些长毛羊自由交配时,该群体产生两种配子的概率:B=2/3,b=1/3,则bb=1/9,B_=8/9。
(2)若双亲基因型为Hh,则子代HH、Hh、hh的比例为1:2:1,HH的表现有角,hh的表现无角,Hh的公羊有角,母羊无角,故雄性羊中无角比例为1/4,雌性羊中无角比例为3/4。
(3)当出现显性纯合致死时,某一性状的个体自交总出现特定的比例2:1,而非正常的3:1,本题中卡拉库尔羊毛色的遗传属于此类情况。
答案:
(1)1/9    
(2)Hh的公羊有角,母羊无角
(3)显性纯合的卡拉库尔羊死亡(或DD的卡拉库尔羊死亡)
基因与染色体的关系:

1、萨顿假说
(1)研究方法:类比推理法。
(2)假说内容:基因是由染色体携带着从亲代传递给下一代的,即基因就在染色体上。
(3)依据:基因和染色体在行为上存在着明显的平行关系。
主要体现在以下几个方面:
基因 染色体
体细胞 成对存在;且一个来自母方,一个来自父方 成对存在;且一条来自母方,一条来自父方,为同源染色体
减数第一次分裂 决定同一性状的成对基因彼此分离,决定不同性状的基因自由组合 同源染色体分离,非同源染色体自由组合
配子 只含成对基因中的一个 只含每对同源染色体中的一条
受精作用 一个来自母方的基因和一个来自父方的基因随雌雄配子两两随机结合 一条来自母方的染色体和一条来自父方的染色体随雌雄配子两两随机结合
前后代传递的特点 互不融合,互不干扰;保持完整性和独立性 维持前后代体细胞染色体数目的恒定,染色体的形态和结构也保持相对稳定


2、基因位于染色体上的实验证据    
(1)实验者:摩尔根。
(2)实验材料:果蝇。果蝇作为遗传学实验材料的优点有:
①易饲养,②繁殖快,③后代多。
(3)实验探究过程
①提出问题

分析:
a、果蝇的红眼与白眼是一对相对性状;
b、F1全为红眼一红眼是显性性状;
c、F2中红眼:白眼=3:1——符合分离定律,红眼和白眼受一对等位基因控制;
d、白眼性状的表现与性别相联系。
②假设与解释假设控制果蝇白眼的基因(用w表示)位于X染色体上,而Y染色体上不含有它的等位基因,其遗传图解可表示为:

③测交验证
亲本中的白眼雄蝇和它的子代红眼雌蝇交配。

④结论:控制果蝇红眼与白眼的基因只位于X染色体上——基因位于染色体上。


类比推理与假说一演绎法比较:

1、假说一演绎法:在观察和分析基础上提出问题 ——通过推理和想像提出解释问题的假说——据假说进行演绎推理——通过实验检验演绎推理的结沦——若实验结果与预期结论相符,证明假说是正确的;反之,假说是错误的。
2、类比推理法:将未知事物同已知事物的性质类比,依据其相似性,提出关于未知事物某些性质的假说——类比推理得出的结论,并不具备逻辑的必然性,其正确与否,有待观察及实验检验。
例  在探索遗传本质的过程中,科学发现写研究方法相一致的是(   )
①1866年孟德尔的豌豆杂交实验,提出遗传定律 ②1903年萨顿研究蝗虫的减数分裂,提出假说“基因在染色体上” ③1910年摩尔根进行果蝇杂交实验,证明基因位于染色体上
A.①假说_演绎法②假说一演绎法③类比推理法
B.①假说一演绎法②类比推理法③类比推理法
C.①假说一演绎法②类比推理法③假说一演绎法
D.①类比推理法②假说一演绎法③类比推理法
思路点拨:孟德尔根据豌豆杂交实验,提出遗传定律,采用的是“假说一演绎法”,萨顿研究蝗虫的减数分裂,提出假说“基因在染色体上”,采用的是“类比推理法”,摩尔根进行果蝇杂交实验,证明基因位于染色体上采用的是“假说一演绎法”。答案C

易错点拨:

1.细胞中的基因都位于染色体上吗?为什么?
不是。①真核生物的核基因都位于染色体上,而质基因位于线粒体等细胞器内;②原核生物的基因有的位于核区DNA分子上,有的位于细胞质的质粒上。
2.孟德尔遗传定律的研究和萨顿假说的提出所使用的方法相同吗?
不相同。孟德尔遗传定律的研究采用的是假说一演绎法;萨顿推理基因和染色体的关系采用的是类比推理法。
例  下列叙述中,不能说明“核基因和染色体行为存在平行关系”的是(   )
A.基因发生突变而染色体没有发生变化
B.非等位基因随非同源染色体的自由组合而组合
C.二倍体生物形成配子时基因和染色体数目均减半
D.Aa杂合子发生染色体缺失后,可表现a基因的性状
思路点拨:由于染色体是基因(核基因)的载体,因此染色体在细胞分裂(包括有丝分裂、减数分裂)过程中染色体数量的变化和分配规律,均影响相应基因的规律性变化,即说明“核基因与染色体行为存在平行关系”。答案A
3、摩尔根的果蝇杂交实验中F2个体红眼与白眼比例为3:1,说明这对性状符合分离定律;白眼全是雄性说明与性别相联系。
4、基因型书写:常染色体上的基因不需标明其位于常染色体上;性染色体上的基因需将性染色体及其上基因一同写出,如XwY。
5、XY代表一对同源染色体,不能误解为一对等位基因。Y染色体上没有红眼、白眼基因并不代表其上面没有基因。


知识拓展:

类比推理概念:是根据两个对象或两类事物的一些属性相同或相似,来猜测另一些属性也可能相同或相似的思维方法。
基因、蛋白质和性状的关系:

1、基因通过中心法则控制性状,包括两种方式:
(1)通过控制酶的合成控制代谢过程,间接控制生物体的性状
例如:a.镰刀型细胞贫血症:血红蛋白基因突变→血红蛋白结构异常→红细胞呈镰刀状蔗糖多→水分保留少。
b囊性纤维病:CFTR基因缺失3个碱基→CFTR蛋白结构异常→功能异常
(2)可通过控制蛋白质的结构直接控制生物的性状。
例如:a.豌豆粒型:豌豆淀粉分支酶基因异常(插入外来DNA序列)→不能正常合成淀粉分支酶→淀粉少→皱粒。
b.白化病:酪氨酸酶基因异常→缺少酪氨酸酶→制约酪氨酸转化为黑色素→白化病

知识拓展:

1、生物的有些性状是受单基因控制的(如豌豆的高茎和矮茎,由一对等位基因控制),而有些性状是由多对基因来决定的(如人的身高)。
2、生物的性状由基因决定,还受环境条件的影响,是生物的基因和环境共同作用的结果,即表观型= 基因型+环境条件。


染色体变异:

1、染色体变异分为染色体结构变异和数目变异。
(1)染色体结构变异
①概念:排列在染色体上的基因的数目或排列顺序发生改变,而导致性状的变异。
②类型:在自然条件或人为因素的影响下,染色体结构的变异主要有以下4种:缺失、重复、倒位、易位。 ③结果:染色体结构变异都会使排列在染色体上的基因的数目或排列顺序发生改变,从而导致性状的改变。
类型 定义 实例 示意图
缺失 一条正常染色体断裂后丢失某一片段引起的变异。 猫叫综合征
重复 染色体增加某一片段引起的变异。一条染色体的某一片段连接到同源的另一条染色体上,结果后者就有一段重复基因。 果蝇棒状眼
倒位 染色体中某一片段位置颠倒180°后重新结合到原部位引起的变异。基因并不丢失,因此一般生活正常。
易位 染色体的某一片段移接到另一条非同源染色体上引起的变异 人慢性粒细胞白血病
2、染色体数目变异
(1)染色体数目变异的种类
①细胞内的个别染色体增加或减少。
②细胞内染色体数日以染色体组的形式成倍地增加或减少,
(2)染色体组
①概念:细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部遗传信息,这样的一组染色体叫做一个染色体组。
②条件:
a、一个染色体组中不含有同源染色体;
b、一个染色体组中所含的染色体形态、大小和功能各不相同;
c、一个染色体组中含有控制生物性状的一整套基因。
(3)单倍体和多倍体比较
项目 单倍体 多倍体
概念 体细胞中含有本物种配子染包体数目的个体 体细胞中含有三个或三个以上染色体组的个体
成因 自然成因 由配子直接发育成个体,如雄蜂是由未受精的卵细胞发育而来 外界环境条件剧变
人工诱导 花药离体培养 用秋水仙素处理萌发的种子或幼苗
发育起点 配子 受精卵或合子
植株特点 植株弱小 茎秆粗壮,叶片、果实和种子比较大,营养物质含量丰富,发育延迟,结实率低
可育性 高度不育 可育,但结实性差
应用 单倍体育种 多倍体育种
注:①二倍体:有受精卵发育而成,体细胞中含有两个染色体组的个体。
②染色体组:细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部信息,这样的一组染色体,叫做一个染色体组。
3、染色体变异在实践中的应用
(1)单倍体育种

例:

②优点:明显缩短育种年限,后代一般是纯合子。
(2)多倍体育种
①方法:用秋水仙素处理萌发的种子或幼苗。
②成因:秋水仙素抑制纺锤体的形成。
 
④实例:二倍体无子西瓜的培育。

表解基因重组、基因突变和染色体变异的不同:

项目 基因重组 基因突变 染色体变异
概念 因基因的重新组合而发生的变异 基因结构的改变,包括DNA碱基对的替换、增添和缺失 染色体结构或数目变化而引起的变异
类型 ①非同源染色体上的非等位基因自由组合;②同源染色体的非姐妹染色单体之间的交叉互换 ①自然状态下发生的——自然突变;②人为条件下发生的——人工诱变 ①染色体结构变异;②染色体数目变异
鉴定方法 光学显微镜下均无法检出,可根据是否有新性状或新性状组合确定 光学显微镜下可检出
适用范围 真核生物进行有性生殖的过程中发生 任何生物均可发生(包括原核生物、真核生物及非细胞结构的生物) 真核生物遗传中发生
生殖类型 自然状态下只在有性生殖中发生 无性生殖和有性生殖均可发生 无性生殖和有性生殖均可发生
产生机理 由基因的自由组合和交叉互换引起 基因的分子结构发生改变的结果 染色体的结构或数目发生变化的结果
细胞分裂 在减数分裂中发生 无丝分裂、有丝分裂、减数分裂均可发生 有丝分裂和减数分裂中均可发生
产生结果 只改变基因型,未发生基因的改变,既无“质”的变化,也无“量”的变化 产生新的基因,发生基因“种类”的改变,即有“质”的变化,但无“量”的变化 可引起基因“数量”的变化,如增添或缺失几个基因
意义 生物变异的来源之一,对生物进化有十分重要的意义 生物变异的根本来源,提供生物进化的原材料 对生物进化有一定意义
育种应用 杂交育种 诱变育种 单倍体、多倍体育种

 知识点拨:染色体组数的判定

 1.染色体组数的判断方法
(1)根据细胞中染色体的形态判断

细胞内同一种形态的染色体有几条,则含有几个染色体组。如图A细胞内同种形态的染色体有3条,则该细胞中有3个染色体组;图C细胞内同一种形态的染色体有1条,则该细胞中有1个染色体组。
细胞内有几种形态的染色体,一个染色体组内就有几条染色体。如图A细胞内有3种形态的染色体,则该细胞的一个染色体组内就有3条染色体;如图C 细胞内有5种形态的染色体,则该细胞的一个染色体组内就有5条染色体。
(2)根据基因型判断
在细胞或生物体的基因型中,控制同一性状的基因出现几次,则含有几个染色体组,可简记为“同一英文字母无论大写还是小写,出现几次就含几个染色体组”。如图B细胞内控制同一性状的基因出现4次,则含有4个染色体组。
(3)根据染色体数目的形态数判断
染色体组的数目=染色体数/染色体的形态数
如图A细胞内共含有9条染色体,染色体的形态数是3种,9/3=3,则该细胞内含有3个染色体组;如图 B细胞内共含有8条染色体,染色体的形态数是2种, 8/2=4,则该细脆内含有4个染色体组;如图C细胞内共含有5条染色体,染色体的形态数是5种,5/5=1,则该细胞内含有1个染色体组。
2.一些细胞分裂图中的染色体组数判断(如图)

①减数第一次分裂的前期,染色体4条,生殖细胞中含有染色体2条,每个染色体组有2条染色体,该细胞中有2个染色体组。
②减数第二次分裂的前期,染色体2条,生殖细胞中含有染色体2条,每个染色体组有2条染色体,该细胞中有1个染色体组。
③减数第一次分裂的后期,染色体4条,生殖细胞中含有染色体2条,每个染色体组有、2条染色体,该细胞中有2个染色体组。
④有丝分裂后期,染色体8条,生殖细胞中含有染色体2条,每个染色体组有2条染色体,该细胞中有4 个染色体组。


知识拓展

1、基因突变是染色体的某一位点上基因中碱基对的改变,是分子水平的变异,而染色体变异则是比较明显的染色体结构或数目的变异,属于细胞水平的变异。
2、判定生物是单倍体、二倍体、多倍体的关键是看它的发育起点。若发育起点是配子,不论其体细胞中含有几个染色体组都叫单倍体。若发育起点是受精卵,其体细胞中有几个染色体组就叫几倍体。
 3、体细胞染色体组为奇数的单倍体与多倍体高度不育的原因:进行减数分裂形成配子时,同源染色体无法正常联会或联会紊乱,不能产生正常配子。
4、单倍体育种得到的一般是纯合子。二倍体生物的花粉经单倍体育种后,得到的一定是纯合子植株。四倍体等多倍体的花粉经离体培养、秋水仙素处理后,可能产生杂合子。如BBbb的花粉基因型有三种:BB、 Bb、bb,培养处理后基因型分别是BBBB、BBbb(杂合子)、bbbb。
5、用秋水仙素处理使植株染色体数目加倍,若操作对象是单倍体植株,叫单倍体育种;若操作对象为正常植株,叫多倍体育种。不能看到“染色体数目加倍” 就认为是多倍体育种。
6、不同生物的变异类型不同,不同生殖方式所带来的变异类型亦不相同,探究变异原因与变异类型时首先应注意的是生物的不同种类和生殖方式。
(1)病毒的可遗传变异的来源——基因突变。
(2)原核生物可遗传变异的来源——基因突变。
(3)真核生物可遗传变异的来源:
①进行无性生殖时——基因突变和染色体变异;
②进行有性生殖时——基因突变、基因重组和染色体变异。
发现相似题
与“下图是科学家对果蝇正常染色体上部分基因的测序结果。请据图...”考查相似的试题有: