返回

高中物理

首页
  • 问答题
    如图1所示,边长L=2.5m、质量m=0.50kg的正方形金属线框,放在磁感应强度B=0.80T的匀强磁场中,它的一边与磁场的边界MN重合.在力F作用下由静止开始向左匀加速运动,在5.0s内从磁场中拉出.测得金属线框中的电流随时间变化的图象如图2所示.已知金属线框的总电阻R=4.0Ω.

    魔方格

    (1)试判断金属线框从磁场中向左拉出的过程中,线框中的感应电流方向,并在图中标出.
    (2)t=2.0s时金属线框的速度和力F的大小.
    (3)已知在5.0s内力F做功1.92J,那么金属线框从磁场拉出的过程中,线框中产生的焦耳热是多少?
    本题信息:2006年南汇区模拟物理问答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “如图1所示,边长L=2.5m、质量m=0.50kg的正方形金属线框,放在磁感应强度B=0.80T的匀强磁场中,它的一边与磁场的边界MN重合.在力F作用下由静止开始向左匀加速...” 主要考查您对

牛顿第二定律

楞次定律

导体切割磁感线时的感应电动势

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 牛顿第二定律
  • 楞次定律
  • 导体切割磁感线时的感应电动势
内容:

物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s2加速度的力,叫做1N(kg·m/s2=N)。

对牛顿第二定律的理解:

①模型性
牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。
②因果性
力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。
③矢量性
合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。
④瞬时性
加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
⑤同一性(同体性)
中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
⑥相对性
中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。
⑦独立性
F产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:
⑧局限性(适用范围)
牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。
牛顿第二定律的应用:

1.应用牛顿第二定律解题的步骤:
(1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=
对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。
(2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。
(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
(4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
2.两种分析动力学问题的方法:
(1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。
(2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。
①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:(沿加速度方向),(垂直于加速度方向)。
②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。
3.应用牛顿第二定律解决的两类问题:
(1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下:

(2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:

可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。
知识扩展:

1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。
2.关于a、△v、v与F的关系
(1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。
(2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。
(3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。
楞次定律:

1、楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。
2、对楞次定律的理解
①谁阻碍谁——感应电流的磁通量阻碍产生感应电流的磁通量;
②阻碍什么——阻碍的是穿过回路的磁通量的变化,而不是磁通量本身;
③如何阻碍——原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”;
④阻碍的结果——阻碍并不是阻止,结果是增加的还增加,减少的还减少。
3、楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:
①阻碍原磁通量的变化;
②阻碍物体间的相对运动(来时拒,去时留);
③阻碍原电流的变化(自感)。
4、运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为:
①明确原磁场:弄清原磁场的方向及磁通量的变化情况;
②确定感应磁场:即根据楞次定律中的“阻碍”原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向;
③判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向。

楞次定律与右手定则的关系:

“三定则一定律”的比较:

  


电磁感应中能量问题的解法:

(1)电磁感应过程的实质是不同形式的能量转化的过程,电磁感应过程中产生的感应电流在磁场中必定受到安培力作用。因此要维持安培力存在,必须有 “外力”克服安培力做功。此过程中,其他形式的能转化为电能。“外力”克服安培力做多少功,就有多少其他形式的能转化为电能。当感应电流通过电器时,电能又转化为其他形式的能。
同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能。
(2)电能求解思路主要有三种:
①利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。
②利用能量守恒求解:其他形式能的减少量等于产生的电能。
③利用电路特征来求解:通过电源提供总能量IE或纯电阻电路中产生的焦耳热Q=I2RT来计算。
(3)基本解题思路
①明确研究对象(哪一部分闭合回路或哪一部分导体)和研究过程。
②对研究对象(运动的导体)受力分析,明确各个力的做功情况。
③分析研究对象的运动过程,明确各种能量的转化情况。
④选择恰当的规律列式求解。
(4)几种常用的功能关系
①导体所受的重力做功导致重力势能的变化:
②导体所受的合外力做功导致其动能的变化:
③导体所受的重力以外的力做功导致其机械能变化:
④滑动摩擦力做功导致系统内能增加: (指相对位移的大小)。
⑤安培力做功导致电能变化:克服安培力做的功等于电路中增加的电能,即
说明此结论在电路中只有动生电动势时才成立,涉及感生电动势时此结论就不成立了。


广义的楞次定律:



导体切割磁感线产生的电动势:

 


电磁感应中电路问题的解法:

电磁感应规律与闭合电路欧姆定律相结合的问题,主要涉及电路的分析与计算。解此类问题的基本思路是:
(1)找电源:哪部分电路产生了电磁感应现象,则这部分电路就是电源。
(2)由法拉第电磁感应定律求出感应电动势的大小,根据楞次定律或右手定则确定出电源的正负极。
①在外电路,电流从正极流向负极;在内电路,电流从负极流向正极。
②存在双感应电动势的问题中,要求出总的电动势。
(3)正确分析电路的结构,画出等效电路图。
①内电路:“切割”磁感线的导体和磁通量发生变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻。
②外电路:除“电源”以外的电路即外电路。
(4)运用闭合电路欧姆定律、串并联电路特点、电功率等列方程求解。


发现相似题
与“如图1所示,边长L=2.5m、质量m=0.50kg的正方形金属线框,放在...”考查相似的试题有: