返回

高中三年级化学

首页
  • 填空题
    [三选一—选修物质结构与性质]
    科学新发现推动社会大发展。
    (1)2010年11月,日本东京大学的几原雄一教授在研究氢与钒(V)的化合物时捕捉到了氢原子,成功拍下了世界首张氢原子的照片。如图所示是氢钒化合物的晶体构造。

    ①写出基态钒原子的核外电子排布式___________。
    ②该氢钒化合物的化学式为____________。
    (2)2010年8月,澳大利亚悉尼大学陈敏(Min Chen)博士等研究人员发现了一种能吸收红外光谱的叶绿素-f,这是迄今为止发现的第五种叶绿素。下图是某叶绿素的结构简式。

    ① 叶绿素中含有C、H、O、N、Mg五种元素,C、N、O三种元素的第一电离能由小到大的顺序是_______________。
    ②叶绿素中氮原子的杂化方式为_______________,
    在下图的方框内用“→”标出Mg2+的配位键。

    (3)二氧化钛(TiO2)是常用的、具有较高催化活性和稳定性的光催化剂,常用于污水处理。O2在其催化作用下,可将CN氧化成CNO,进而得到N2。与CNO互为等电子体的分子、离子化学式分别为____________、______________(各写一种)。
    (4)肼可用作火箭燃料,肼能与硫酸反应生成N2H6SO4。N2H6SO4晶体类型与硫酸铵相同,则N2H6SO4的晶体内不存在________ (填标号)。
    a.离子键 b.共价键   c.配位键  d.范德华力
    本题信息:2012年模拟题化学填空题难度较难 来源:杨云霞
  • 本题答案
    查看答案
本试题 “[三选一—选修物质结构与性质]科学新发现推动社会大发展。(1)2010年11月,日本东京大学的几原雄一教授在研究氢与钒(V)的化合物时捕捉到了氢原子,成功拍下了...” 主要考查您对

电子排布式

杂化轨道理论(中心原子杂化方式)

晶胞

电离能

等电子原理(等电子体)

配位键

共价键

离子键

范德华力

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 电子排布式
  • 杂化轨道理论(中心原子杂化方式)
  • 晶胞
  • 电离能
  • 等电子原理(等电子体)
  • 配位键
  • 共价键
  • 离子键
  • 范德华力

电子排布式:

①简化电子排布式
为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的冗素符号外加方括号表示,即为简化电子排布式,如K 的简化电子排布式为
②特殊电子排布式
有个别元素的基态原子的电子排布对于构造原理有1个电子的反常。因为能量相同的原子轨道在全充满()、半充满()和全空()状态时,体系的能量较低,原子较稳定。

(2)电子排布图:用方框表示一个原子轨道,用箭头“↑”或“↓”来区别自旋状态不同的电子。



构造原理:

多电子原子的核外电子排布总是按照能量最低原理,由低能级逐步填充到高能级。绝大多数元素的原子核外电子的排布遵循下图所示的排布顺序,这种排布顺序被称为构造原理。

点拨:构造原理中的排布顺序,其实质是各能级的能量高低顺序,可由下列公式得出ns<(n一2)f< (n一1)d<np(n表示能层序数)。常用的重要的能级交错顺序有:

核外电子排布式一构造原理的应用:

根据构造原理,按照能级顺序,用能级符号右上角的数字表示该能级上电子数的式子,叫做电子排布式。例如,


杂化轨道理论:

是鲍林为了解释分子的立体结构提出的。中心原子杂化轨道、孤电子对数及与之相连的原子数间的关系是:杂化轨道数=孤电子对数+与之相连的原子数。杂化前后轨道总数比变,杂化轨道用来形成σ键或容纳孤对电子,未杂化的轨道与杂化轨道所在平面垂直,可用来形成π键。

常见杂化方式:

(1)sp杂化:直线型 如:CO2、CS2
(2)sp2杂化:平面三角形(等性杂化为平面正三角形) 如:BCl3 C2H4
不等性杂化为V字型 如:H2O H2S OF2
(3)sp3杂化:空间四面体(等性杂化为正四面体) 如:CH4、CCl4
不等性杂化为三角锥 如:NH3 PCl3 H3O+  
sp3d杂化:三角双锥
sp3d2杂化:八面体(等性杂化为正八面体)

分子的构型与杂化类型的关系:


晶胞:

1.定义描述晶体结构的基本单元叫做晶胞。
2.结构一般来说,晶胞为平行六面体,晶胞只是晶体微观空间里的一个基本单元,在它的上、下、左、右、前、后无隙并置地排列着无数晶胞,而且所有晶胞的形状及其内部的原子种类、个数及几何排列是完全相同的。“无隙”是指相邻晶胞之间没有任何间隙,“并置”是指所有晶胞都是平行排列的,取向相同。


晶胞中微粒数目的确定:

计算晶胞中微粒数目的常用方法是均摊法。均摊法是指每个晶胞平均拥有的粒子数目。如某个粒子为n个晶胞所共有,则该粒子有属于这个晶胞。
(1)长方体(或正方体)形晶胞中不同位置的粒子数的计算。
①处于顶点的粒子,同时为8个晶胞所共有,每个粒子有属于该晶胞。
②处于棱上的粒子,同时为4个晶胞所共有,每个粒子有属于该晶胞。
③处于面上的粒子,同时为2个晶胞所共有。每个粒子有属于该晶胞。
④处于晶胞内部的粒子,则完全属于该晶胞。
(2)非平行六面体形晶胞中粒子数目的计算同样可用均摊法,其关键仍然是确定一个粒子为几个晶胞所共有。例如,石墨晶胞每一层内碳原子排成许多个六边形,其顶点(1个碳原子)对六边形的贡献为,那么每一个六边形实际有6×=2个碳原子。
(3)在六棱柱晶胞(如图所示 MgB2的晶胞)中,顶点上的原子为6 个晶胞(同层3个,上层或下层3个) 共有,面上的原子为2个晶胞共有,因此镁原子个数为12×+2×=3,硼原子个数为6。

特别提醒:在晶胞中微粒个数的计算过程中,不要形成思维定式,不同形状的晶胞应先分析任意位置上的一个粒子被几个晶胞共用,如六棱柱晶胞中,顶点、侧棱、底面上的棱、面心上的原子依次被6、3、4、2 个晶胞共用。

有关晶胞密度的计算步骤:

①根据“分摊法”算出每个晶胞实际含有各类原子的个数,计算出晶胞的质量m:
②根据边长计算晶胞的体积V:
③根据进行计算,得出结果。


电离能:

(1)概念
气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能。
(2)元素第一电离能的意义:可以衡量元素的原子在气态时失去一个电子的难易程度。第一电离能数值越小,在气态时原子越容易失去一个电子;第一电离能数值越大,在气态时原子越难失去一个电子。
(3)电离能的变化规律
①随核电荷数递增,元素的第一电离能呈周期性变化。
②同一周期内,随着原子序数的增加,原子半径逐渐变小(稀有气体除外),原子核对外层电子的吸引越来越强,元素的原子越来越难失电子,因此元素的第一电离能呈增大的趋势。同一周期内,碱金属元素的第一电离能最小,稀有气体元素的第一电离能最大。
③同一主族,从上到下,随着原子序数的增加,电子层数逐渐增多,原子半径逐渐增大,原子核对外层电子的吸引越来越弱,元素的原子越来越易失电子,故同一主族,随着电子层数的增加,元素的第一电离能逐渐减小。注意通常ⅡA族元素的第一电离能大于ⅢA 族元素、VA族元素的第一电离能大于ⅥA族元素。这是由于ⅡA、VA族元素原子的价电子排布分别为 是较稳定的全充满或半充满状态,因而失去电子所需的能量较高。


等电子原理:

1.等电子原理等电子体具有相似的化学键特征,它们的结构相似,物理性质相近,此原理称为等电子原理。例如,CO和N2的熔沸点、溶解性、分子解离能等都非常相近。
2.等电子粒子电子数相同的粒子(原子、分子、离子)称为等电子粒子。
常见的等电子粒子:


⑥核外电子总数及质子数均相等的粒子:

3.等电子体
(1)原子总数相同、价电子总数相同的粒子互称为等电子体。如N2与CO是等电子体,但N2与C2H2不是等电子体;O2与SO2是等电子体。
(2)常见的等电子体
 
4.等电子原理的应用
(1)利用等电子原理可以较快判断一些分子或离子的构型,如的空间构型分别是三角锥形和正四面体形。
(2)在制造新材料方面有重要应用。如晶体硅、锗是良好的半导体材料,它们的等电子体磷化铝(AIP)、砷化镓(GaAs)也都是良好的半导体材料。,


常见分子的立体结构:


配位键:

又称配位共价键,是一种特殊的共价键。当共价键中共用的电子对是由其中一原子独自供应时,就称配位键。配位键形成后,就与一般共价键无异。成键的两原子间共享的两个电子不是由两原子各提供一个,而是来自一个原子。

共价键:

1.本质原子之间形成共用电子对(或电子云重叠),使得电子出现在核间的概率增大。
2.特征
具有方向性与饱和性。
(1)共价键的饱和性一个原子中的一个未成对电子与另一个原子中的一个未成对电子配对成键后,一般来说就不能再与其他原子的未成对电子配对成键了,即每个原子所能形成共价键的总数或以单键连接的原子数目是一定的,这称为共价键的饱和性。
例如,氯原子中只有一个未成对电子,所以两个氯原子之间可以形成一个共价键,结合成氯分子,表示为氮原子中有三个未成对电子,两个氮原子之间能够以共价三键结合成氮分子,表示为一个氮原子也可与_二个氢原子以三个共价键结合成氨分子,表示为
(2)共价键的方向性
共价键将尽可能沿着电子出现概率最大的方向形成,这就是共价键的方向性。除s轨道是球形对称外,其他原子轨道都具有一定的空间分布。在形成共价键时,原子轨道重叠得越多,电子在核间出现的概率越大,所形成的共价键就越牢固。
例如,硫原子的价电子排布是有两个未成对电子,如果它们分布在互相垂直的轨道中,那么当硫原子和氢原子结合生成硫化氢分子时,一个氢原子的1s轨道上的电子能与硫原子的轨道上的电子配对成键,另一个氢原子的1s轨道上的电子只能与硫原子的轨道上的电子配对成键。
说明:
①共价键的饱和性决定着各种原子形成分子时相互结合的数量关系。如一个氢分子只能由两个氢原子构成,一个水分子只能由两个氢原子和一个氧原子构成。
②共价键的方向性决定着分子的空间构型。
3.分类
(1)按成键原子是否相同或共用电子对是否偏移分

(2)按成键方式分


(3)按共用电子对数分


离子键和共价键:

 


定义:
使阴阳离子结合成化合物的静电作用叫离子键。

成键元素:
活泼金属(或NH4+)与活泼的非金属或酸根离子、OH-

静电作用:
指静电吸引和静电排斥的作用


范德华力:

(1)概念:分子之间普遍存在的一种把分子聚集在一起的相互作用力。范德华力的作用能通常比化学键的键能小得多,一般只有2~20kJ/mol,主要影响物质的物理性质(熔、沸点和溶解度等)。
(2)规律:组成和结构相似的由分子构成的物质,相对分子质量越大,范德华力越大,物质的熔、沸点越高。


水分子间氢键的表示方法及意义:

(1)表示方法:如下图所示

(2)意义:水分子问存在氢键,使水的熔点和沸点升高,高于同主族其他元素的气态氢化物,所以常温常压下水呈液态。另外,在同态水(冰晶体)中,水分子间以氢键结合成排列规整的晶体,水分子间的氢键使冰的结构里存在较大的空隙,造成体积膨胀、密度减小至低于液态水的密度。水的这种性质对水生动物的生存有重要意义。
范德华力和氢键:

范德华力 氢键
概念 把分子聚集在一起的作用力 分子中与氢原子形成共价键的非金属元素原子如果吸引电子的能力很强,原子半径很小,则使氢原子几乎成为“裸露”的质子,带部分正电荷,这样的分子之间氢核与带部分负电荷的非金属元素原子相互吸引,这种静电作用就是氢键
存在范围 分子之间 某些含强极性键的氢化物分子间(如 HF、H2O、NH3)等
强弱比较 比化学键弱得多 比化学键弱,但比范德华力强
影响因素 组成和结构相似的由分子组成的物质,相对分子质量越大,范德华力越大 形成氢键的除H外的非金属元素原子吸引电子的能力越强,半径越小,则氢键越强
对物质性质的影响 影响物质的熔沸点、溶解度等物理性质。一般来说,组成和结构相似的由分子组成的物质,随相对分子质量的增大,物质的熔沸点升高,如熔沸点:
分子间氢键的存在,使物质的熔沸点升高,在水中的溶解度增大,如熔沸点:H2O
说明:氢键不是化学键,可以将其看做是一种较强的分子间作用力。

发现相似题
与“[三选一—选修物质结构与性质]科学新发现推动社会大发展。(1...”考查相似的试题有: