返回

高中物理

首页
  • 多选题
    如图所示,在一根一端封闭、内壁光滑的绝缘直管MN内有一个带正电的小球,空间中充满竖直向下的匀强磁场.开始时,直管水平放置,且水球位于管的封闭端M处.现使直管沿水平方向向右匀速运动,经一段时间后小球到达管的开口端N处.在小球从M到N的过程中(  )
    A.磁场力对小球做了正功
    B.直管对小球做了正功
    C.磁场力的方向不断在变化
    D.小球的运动轨迹是一直线
    魔方格

    本题信息:物理多选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “如图所示,在一根一端封闭、内壁光滑的绝缘直管MN内有一个带正电的小球,空间中充满竖直向下的匀强磁场.开始时,直管水平放置,且水球位于管的封闭端M处.现...” 主要考查您对

力的合成

力的分解

带电粒子在匀强磁场中的运动

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 力的合成
  • 力的分解
  • 带电粒子在匀强磁场中的运动
合力与分力:

当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做这个力的分力。
①合力与分力是针对同一受力物体而言的。
②一个力之所以是其他几个力的合力,或者其他几个力之所以是这个力的分力,是冈为这一个力的作用效果与其他几个力共同作用的效果相当,合力与分力之间的关系是一种等效替代的关系。
③合力可能大于任何一个分力,也可能小于任何一个分力,也可能介于两个分力之间。
④如果两个分力的大小不变,夹角越大,合力就越小;夹角越小,合力就越大。
⑤两个大小一定的力F1、F2,其合力的大小范围


力的运算法则:

1.平行四边形定则
作用在同一点的两个互成角度的力的合力,不等于两分力的代数和,而是遵循平行四边形定则。如果以表示两个共点力F1和F2的线段为邻边作平行四边形,那么合力F的大小和方向就可以用这两个邻边之间的对角线表示,这叫做力的平行四边形定则,如图所示。

2.三角形定则和多边形定则如图(a)所示,两力F1、F2合成为F的平行四边形定则,可演变为(b)图,我们将(b)图称为三角形定则合成图,即将两分力F1、F2首尾相接,则F就是由F,的尾端指向F2的首端的有向线段所表示的力。

如果是多个力合成,则由三角形定则合成推广可得到多边形定则,如图为三个力F1,F2、F3的合成图,F 为其合力。


力的合成与分解:

(1)定义:求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。
(2)力的合成与分解的具体方法
a.作图法:选取统一标度,严格作出力的图示及平行四边形,然后用统一标度去度量各个力的大小;
b.计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求合力或分力的大小。一般要求会解直角三角形。

力的分解的几种情况:




分解方法:



几种按效果分解的实例:





由力的三角形定则求力的最小值:

(1)当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2最小的条件是:两个分力垂直,如图甲。最小值
(2)当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2最小的条件是:所求分力F2与合力F垂直,如图乙。最小值
 
(3)当已知合力F的大小及一个分力F1的大小时,另一个分力F2最小的条件是:已知大小的分力F1与合力 F同方向。最小值

由圆的切线求力方向的极值:

(1)当已知两分力F1、F2的大小时,合力,的方向与较大分力间夹角有最大值,与较小分力间夹角有最小值。如图所示,设两分力中F1较大,则合力F与F1之间最大夹角θ满足
(2)当已知合力F与其中一个分力F1的大小时,若F >F1,则另一个分力F2与合力F的方向间夹角有一最大值。如图所示,其最大夹角θ满足。若F<F1时,则另一个分力F2与合力F间夹角无极值,可在0~180之间变化:当F1与F同向时分力F2与合力F之间夹角最大,为180;当F1与F反向时分力F2与合力 F之间夹角最小,为0,但两分力间夹角有最大值,其最大值满足


带电粒子在匀强磁场中的运动形式:


电偏转与磁偏转的对比:





关于角度的两个结论:

(1)粒子速度的偏向角φ等于圆心角α,并等于AB弦与切线的弦切角θ的2倍(如图所示),即

(2)相对的弦切角θ相等,与相邻的弦切角θ'互补,即

有界磁场中的对称及临界问题:

(1)直线边界
粒子进出磁场时的速度关于磁场边界对称.如图所示。

(2)圆形边界
①沿半径方向射入磁场,必沿半径方向射出磁场。
②射入磁场的速度方向与所在半径间夹角等于射出磁场的速度方向与所在半径间的夹角。

(3)平行边界
存在着临界条件:

(4)相交直边界


带电粒子在匀强磁场中的匀速圆周运动:



确定轨迹圆心位置的方法:





带电粒子在磁场中做圆周运动时间和转过圆心角的求解方法:



带电粒子在有界磁场中的临界与极值问题的解法:

当某种物理现象变化为另一种物理现象,或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折态通常称为临界状态,涉及临界状态的物理问题叫做临界问题,产生临界状态的条件叫做临界条件,临界问题能有效地考查学生多方面的能力,在高考题中屡见不鲜。认真分析系统所经历的物理过程,找出与临界状态相对应的临界条件,是解答这类题目的关键,寻找临界条件,方法之一是从最大静摩擦力、极限频率、临界角、临界温度等具有临界含义的物理量及相关规律人手:方法之二是以题目叙述中的一些特殊词语如“恰好”、“刚好”、“最大”、“最高”、“至少”为突破口,挖掘隐含条件,探求临界位置或状态。如:
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。据此可以确定速度、磁感应强度、轨迹半径、磁场区域面积等方面的极值。
(2)当速度v一定时,弧长(或弦长)越大,圆周角越大,则带电粒子在有界磁场巾运动的时间越长。(前提条件是弧是劣弧)
(3)当速率v变化时,圆周角大的,运动时间越越长。

“动态圆”问题的解法:

 1.入射粒子不同具体地说当入射粒子的比荷不同时,粒子以相同的速度或以相同的动能沿相同的方向射人匀强磁场时,粒子在磁场中运动的周期必不相同;运动的轨迹半径,在以不同的速度入射时不相同,以相同动能入射时可能不同。
2.入射方向不同相同的粒子以相同的速率沿不同方向射人匀强磁场中,粒子在磁场中运动的轨道中,运动周期是相同的,但粒子运动径迹所在空间位置不同,所有粒子经过的空间区域在以入射点为圆心,运动轨迹圆的直径为半径的球形空间内。当磁场空间有界时,粒子在有界磁场内运动的时间不同,所能到达的最远位置不同,从而形成不同的临界状态或极值问题,此类问题中有两点要特别注意:一是旋转方向对运动的影响,二是运动中离入射点的最远距离不超过2R,因R是相同的,进而据此可利用来判定转过的圆心角度、运动时间等极值问题,其中l是最远点到入射点间距离即轨迹上的弦长。
3.入射速率不同
相同的粒子从同一点沿同一方向以不同的速率进入匀强磁场中,虽然不同速率的粒子运动半径不同,但圆心却在同一直线上,各轨迹圆都相切于入射点。在有界磁场中会形成相切、过定点等临界状态,运动时间、空间能到达的范围等极值问题。当粒子穿过通过入射点的直线边界时,粒子的速度方向相同,偏向角相同,运动时间也相同。
4.入射位置不同
相同的粒子以相同的速度从不同的位置射入同一匀强磁场中,粒子在磁场中运动的周期、半径都相同,但在有界磁场中,对应于同一边界上的不同位置,会造成粒子在磁场巾运动的时间不同,通过的路程不同,出射方向不同,从而形成不同的临界状态,小同的极值问题。
5.有界磁场的边界位置变化
相同粒子以相同的速度从同定的位置出发,途经有界磁场Ⅸ域,若磁场位置发生变化时,会引起粒子进入磁场时的入射位置或相对磁场的入射方向发生变化,从而可能引起粒子在磁场中运动时间、偏转角度、出射位置与方向等发生变化,进而形成临界与极值问题。


发现相似题
与“如图所示,在一根一端封闭、内壁光滑的绝缘直管MN内有一个带...”考查相似的试题有: