返回

高中三年级生物

首页
  • 读图填空题
    2008年10月三位科学家因在发现和研究绿色荧光蛋白方面做出贡献而获诺贝尔化学奖。同月,据英国《每日邮报》报道,美国新奥尔良的科学家已培育出世界首只能在“黑暗处发光”的猫。这只六个月大的猫在日照条件下看起来很正常,但若将它放在一个黑暗的房间里,打开紫外灯后,它的脸部会发出一种明亮的绿光,这是因为它的体内有绿色荧光蛋白的缘故。

    (1)绿色荧光蛋白基因最初是从水母中分离得到的,这个基因共包含有5170个碱基对,控制合成由238个氨基酸组成的荧光蛋白,由此推测,翻译该蛋白质的信使RNA碱基数量至少有__________个。
    (2)在基因工程中获取绿色荧光蛋白基因时,最好采用____________的方法。如果基因两端的碱基序列如图甲所示,则构建重组DNA分子时所用的DNA连接酶作用于图甲中的________处。(填“a”或“b”)
    (3)图乙是荧光蛋白基因表达过程中的_______阶段,图中2和5代表的核苷酸依次是_______________(填中文名称。)
    (4)科学家进行此项转基因动物的研究,目的是为寻找由于基因异常所引起疾病的治疗方法。通过特定的方法可以使绿色荧光蛋白基因与特定基因相伴随,从而使科学家更为容易地研究相关遗传疾病。下图是某遗传病的家族遗传图谱(控制基因为B和b),请据图分析回答:

    此遗传病的致病基因是_______性基因,最可能位于_______染色体上。由此推测Ⅱ2基因型是_______,Ⅱ3和Ⅱ4如果再生一个孩子,表现正常的概率是____________。
    本题信息:2009年内蒙古自治区模拟题生物读图填空题难度极难 来源:姚瑶
  • 本题答案
    查看答案
本试题 “2008年10月三位科学家因在发现和研究绿色荧光蛋白方面做出贡献而获诺贝尔化学奖。同月,据英国《每日邮报》报道,美国新奥尔良的科学家已培育出世界首只能在“...” 主要考查您对

蛋白质的结构

基因型和表现型

遗传病的类型

基因工程的基本操作程序

基因工程的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 蛋白质的结构
  • 基因型和表现型
  • 遗传病的类型
  • 基因工程的基本操作程序
  • 基因工程的应用
蛋白质结构的形成及多样性:

1、蛋白质的结构层次:


2、蛋白质种类多样性的原因:
(1)氨基酸的原因:
①氨基酸的种类不同。
②氨基酸的数目成百上千。
③氨基酸的排列顺序千变万化。
(2)肽链的原因:
肽链的盘曲、折叠方式及其形成的空间结构千差万别。

知识点拨:

1、脱去的水分子中的氢来自氨基和羧基,氧来自羧基。
2、肽键的写法有以下几种,这三种都是正确的。 或-CO-NH-或-NH-CO-
3、多肽中具体有几个氨基或几个羧基,应关注R基中是否有氨基或羧基。
4、若形成的多肽链是环状:氨基酸数=肽键数=失去水分子数。
5、在蛋白质分子量的计算中若通过图示或其他形式告知蛋白质分子中含有二硫键时,要考虑脱去氢的质量,每形成一个二硫键,脱去2个H。

 知识拓展:

氨基酸形成多肽过程中的相关计算
1、蛋白质分子量、氨基酸数、肽链数、肽键数和脱去水分子数的关系
(1)肽键数=脱去水分子数=氨基酸数一肽链数;
(2)蛋白质分子量=氨基酸数目x氨基酸平均相对分子质量一脱去水分子数×18。 

肽链数目 酸数氨基 脱去水分子数 多肽链分子量 氨基数目 羧基数目
1条 m m-1 m-1 am-18(m-1) 至少1个 至少1个
2条 m m-n m-n am-18(m-n) 至少n个 至少1个
注:1、氨基酸平均相对分子质量为a。
2、蛋白质中游离氨基或羧基数的计算
(1)至少含有的游离氨基或羧基数=肽链数
(2)游离氨基或羧基数=肽链数+R基中含有的氨基或羧基数
3、蛋白质中含有N、O原子数的计算 (1)N原子数=肽键数+肽链数+R基上的N原子数=各氨基酸中N原子总数。
(2)O原子数=肽键数+2×肽链数+R基上的O原子数=各氨基酸中O原子总数一脱去水分子数。
4、巧记氨基酸结构通式让学生把自己身体想象成一个氨基酸分子:中央C原子、头-H原子、右手——氨基(-NH2)左手——羧基(-COOH)、脚-R基(-R)
5、巧记脱水缩合过程 首先由两个人手拉手,一个人出左手拉住另一个人的右手,脱去一分子水,形成二肽。然后再加上一个人,又脱去一分子水,形成三肽,以此类推,形成多肽。

基因型和表现型:

1、表现型:指生物个体表现出来的性状,如豌豆的高茎和矮茎。
2、基因型:与表现型有关的基因组成,如高茎豌豆的基因型是DD或Dd,矮茎豌豆的基因型是dd。
3、等位基因:控制相对性状的基因。
4、纯合子:由两个基因型相同的配子结合而成的合子,再由此合子发育而成的新个体。如基因型为 AAbb、XBXB、XBY的个体都是纯合子。纯合子的基因组成中无等位基因,只能产生一种基因型的配子(雌配子或雄配子),自交后代无性状分离。
 5、杂合子:由两个基因型不同的配子结合而成的合子,再由此合子发育而成的新个体。如基因型为 AaBB、AaBb的个体。杂合子的基因组成至少右一对等位基因,因此至少可形成两种类型的配子(雌配子或雄配子),自交后代出现性状分离。


表现型与基因型的相互推导:

1、由亲代推断子代的基因型与表现型(正推型)
亲本 子代基因型 子代表现型
AA×AA AA 全为显性
AA×Aa AA:Aa=1:1 全为显性
AA×aa Aa 全为显性
Aa×Aa AA:Aa:aa=1:2:1 显性:隐性=3:1
aa×Aa Aa:aa=1:1 显性:隐性=1:1
aa×aa aa 全为隐性

2、由子代推断亲代的基因型(逆推型)
①隐性纯合突破方法:若子代出现隐性性状,则基因型一定是aa,其中一个a来自父本,另一个a来自母本。 ②后代分离比推断法
后代表现型 亲本基因型组合 亲本表现型
全显 AA×AA(或Aa或aa) 亲本中一定有一个是显性纯合子
全隐 aa×aa 双亲均为隐性纯合子
显:隐=1:1 Aa×aa 亲本一方为显性杂合子,一方为隐性纯合子
显:隐=3:1 Aa×Aa 双亲均为显性杂合子

3、用配子的概率计算
(1)方法:先算出亲本产生几种配子,求出每种配子产生的概率,再用相关的两种配子的概率相乘。
(2)实例:如白化病遗传,Aa×Aa1AA:2Aa:laa,父方产生A、a配子的概率各是1/2,母方产生A、a配子的概率也各是1/2,因此生一个白化病(aa)孩子的概率为1/2×1/2=1/4。
3、亲代的基因型在未确定的情况下,如何求其后代某一性状发生的几率例如:一对夫妇均正常,且他们的双亲也都正常,但双方都有一白化病的兄弟,求他们婚后生白化病孩子的几率是多少?
解此题分三步进行:
(1)首先确定该夫妇的基因型及其几率。由前面分析可推知该夫妇是Aa的几率均为2/3,是AA的几率均为1/3。
(2)假设该夫妇均为Aa,后代患病可能性为1/4。
(3)最后将该夫妇均为Aa的几率2/3×2/3与假设该夫妇均为Aa情况下生白化病忠者的几率1/4相乘,其乘积1/9即为该夫妇后代中出现百化病患者的几率。
知识点拨:

1、基因型相同,表现型不一定相同;表现型相同,基因型也不一定相同。表现型是基因型与环境共同作用的结果。
2、显隐性关系不是绝对的,生物体内在环境和所处的外界环境的改变都会影响显性性状的表现。
常考比例:

分离定律比例:3:1;自由组合比例:9:3:3:1
(1)配子类型问题  如:AaBbCc产生的配子种类数为2×2×2=8种
(2)基因型类型   如:AaBbCc×AaBBCc,后代基因型数为多少?
先分解为三个分离定律:
Aa×Aa后代3种基因型(1AA:2Aa:1aa)Bb×BB后代2种基因型(1BB:1Bb)
Cc×Cc后代3种基因型(1CC:2Cc:1cc)所以其杂交后代有3x2x3=18种类型。
(3)表现类型问题  如:AaBbCc×AabbCc,后代表现数为多少?
先分解为三个分离定律:
Aa×Aa后代2种表现型  Bb×bb后代2种表现型 Cc×Cc后代2种表现型
所以其杂交后代有2x2x2=8种表现型。
(4)遗传病的基因型和表现型比例
例:人类多指基因(T)对手指正常基因(t)为显性,白化基因(a)对正常肤色基因(A)为隐性,两对非等位基因遵循基因的自由组合定律遗传,一家庭中,父亲多指,母亲正常。他们有一个白化病但手指正常的孩子,则下一个孩子正常或同时患有此两种疾病的几率分别是3/8、1/8
遗传病的类型:

类型:单基因遗传病、多基因遗传病和染色体异常遗传病。
(1)常见单基因遗传病分类:
①伴X染色体隐性遗传病:红绿色盲、血友病、进行性肌营养不良(假肥大型)。
发病特点:男患者多于女患者;男患者将至病基因通过女儿传给他的外孙(交叉遗传)
②伴X染色体显性遗传病:抗维生素D性佝偻病。
发病特点:女患者多于男患者
遇以上两类题,先写性染色体XY或XX,再标出基因
③常染色体显性遗传病:多指、并指、软骨发育不全
发病特点:患者多,多代连续得病。
④常染色体隐性遗传病:白化病、先天聋哑、苯丙酮尿症
发病特点:患者少,个别代有患者,一般不连续。 遇常染色体类型,只推测基因,而与X、Y无关
(2)多基因遗传病:唇裂、无脑儿、原发性高血压、青少年糖尿病。
发病特点:家族聚集现象、易受环境影响。
(3)染色体异常病:21三体(患者多了一条21号染色体)、性腺发育不良症(患者缺少一条X染色体)
发病特点:往往造成较严重的后果,甚至在胚胎时期就引起自然流产。
知识拓展:

21三体综合征成因:减数分裂过程中第21号染色体不分离,既可发生在减数第一次分裂,也可发生在减数第二次分裂。

与正常精子结合后,形成具有3条21号染色体的个体。
例  下列说法中,均不正确的一组是(   )
①单基因遗传病就是由一个致病基因引起的遗传病
②遗传病是遗传物质的改变引起的,多基因遗传病群体中发病率较高,易受环境的影响
③禁止近亲结婚是预防显性遗传性疾病发生的最简单而有效的方法
④2l三体综合征和猫叫综合征患者都属于染色体异常遗传病
A.①②B.③④C.①③D.②④
思路点拨:单基因遗传病是由一对等位基因控制的,①错误;遗传病是白遗传物质的改变引起的,多基因遗传病是由多对等位基因控制,群体中发病率高,易受环境的影响,②正确;染色体异常包括染色体数目异常(21三体综合征)和染色体结构异常(猫叫综合征),④正确;人类遗传病的预防包括遗传咨询,产前诊断,禁止近亲结婚是为了预防隐性遗传性疾病, ③错误。
答案C
基因工程的基本操作程序:

1、目的基因的获取
(1)目的基因是指: 编码蛋白质的结构基因。
(2)获取方法:①从基因文库中获取;②人工合成(反转录法和化学合成法);③PCR技术扩增目的基因。
2、基因表达载体的构建
(1)目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。
(2)组成:目的基因+启动子+终止子+标记基因。如图:

①启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。
②终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。
③标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。
(3)基因表达载体的构建过程:

3、将目的基因导入受体细胞
(1)转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。
(2)常用的转化方法:
生物种类 植物细胞 动物细胞 微生物细胞
常用方法 农杆菌转化法 显微注射技术 Ca2+处理法
受体细胞 体细胞 受精卵 原核细胞
转化过程 将目的基因插入到Ti质粒的T-DNA上→农杆菌→导入植物细胞→整合到受体细胞的DNA→表达 将含有目的基因的表达载体提纯→取卵(受精卵)→显微注射→受精卵发育→获得具有新性状的动物 Ca2+处理细胞→感受态细胞→重组表达载体与感受态细胞混合→感受态细胞吸收DNA分子
(3)重组细胞导入受体细胞后,筛选含有基因表达载体受体细胞的依据是标记基因是否表达。
4、目的基因的检测和表达
(1)首先要检测转基因生物的染色体DNA上是否插入了目的基因,方法是采用DNA分子杂交技术。
(2)其次还要检测目的基因是否转录出mRNA,方法是用标记的目的基因作探针与mRNA杂交。
(3)最后检测目的基因是否翻译成蛋白质,方法是从转基因生物中提取蛋白质,用相应的抗体进行抗原--抗体杂交。
(4)有时还需进行个体生物学水平的鉴定。如转基因抗虫植物是否出现抗虫性状。

知识点拨:

1、构建基因文库的目的为了在不知目的基因序列的情况下,便于获得所需的目的基因。
2、PCR技术:是一项在生物体外复制特定DNA片段的核酸合成技术。PCR扩增是获取目的基冈的一种非常有用的方法,也是进行分子鉴定和检测的一种很灵敏的方法。目的:通过指数式扩增获取大量的目的基因。
3、基因文库中不是直接保管相应基因,基因文库中的基因保存在受体菌中。
4、在基因工程的四个操作步骤中,只有第三步将目的基因导入受体细胞不需碱基互补配对,其余三个步骤都涉及碱基互补配对。
5、原核生物繁殖快、多为单细胞、遗传物质相对较少,有利于目的基因的复制与表达,因此常用大肠杆菌等原核生物作为受俸细胞。
6、植物细胞的全能性较高,可经植物组织培养过程成为完整植物体,因此受体细胞可以是受精卵也可以是体细胞;动物基因工程中的受体细胞一般是受精卵。
7、转化的实质是目的基因整合到受体细胞染色体基因组中,从而使受体生物获得了新的遗传特性的现象,从其变化的实质看,这种变异属于可遗传变异中的基因重组。
知识拓展:

1、基因文库的构建:
(1)概念
①基因组文库:含有一种生物的全部基因。将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因组文库。
②cDNA文库:只包含了一种生物的部分基因。
(2)构建过程
基因组文库的构建 cDNA文库的构建
2、人工合成目的基因
(1)反转录法:

(2)人工合成目的基因

3、PCR技术扩增目的基因
①原理:DNA双链复制
②过程:
第一步:加热至90~95℃DNA解链;
第二步:冷却到55~60℃,引物结合到互补DNA链;
第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。
基因工程的应用:

1、植物基因工程:
外源基因类型及举例 成果举例
抗虫转基因植物 抗虫基因:Bt毒蛋白基因、蛋白酶抑制剂基因、淀粉酶抑制剂基因、植物凝集素基因 抗虫水稻、抗虫棉、抗虫玉米
抗病转基因植物 (1)抗病毒基因:病毒外壳蛋白基因、病毒复制酶基因(2)抗真菌基因:几丁质酶基因、抗毒素合成基因 抗病毒烟草、抗病毒小麦、抗病毒番茄、抗病毒甜椒
抗逆转基因植物 抗逆基因:调节细胞渗透压基因、抗冻蛋白基因、抗除草剂基因 抗盐碱和抗干旱的烟草、抗寒番茄、抗除草剂的大豆和玉米
改良品质的转基因植物 优良性状基因:提高必需氨基酸含量的蛋白质编码基因、控制番茄成熟的基因、与花青素代谢有关的基因 高赖氨酸玉米、耐储存番茄、新花色矮牵牛
2、动物基因工程:
外源基因类型及举例 成果举例
提高生长速度的转基因动物 外源生长激素基因 转基因绵羊、转基因鲤鱼
改善畜产品品质的转基因动物 肠乳糖酶基因 乳汁中含乳糖较少的转基因牛
生产药物的转基因动物 药用蛋白基因+乳腺蛋白基因的启动子 乳腺生物反应器
作器官移植供体的转基因动物 外源的抗原决定基因表达的调节因子或除去供体的抗原决定基因 无免疫排斥的转基因猪
3、基因诊断与基因治疗
(1)基因诊断:DNA分子杂交法(即DNA探针法),该方法是根据碱基互补配对原则,把互补的双链 DNA解开,把单链的DNA小片段用同位素、荧光分子或化学发光催化剂等进行标记,之后同被检测的DNA 中的同源互补序列杂交,从而检出所要查明的DNA或基因。
(2)基因治疗的方法:基因置换、基因修复、基因增补、基因失活等。
(3)基因治疗的途径
①体外基因治疗:先从病人体内获得某种细胞进行培养,然后在体外完成基因转移,再筛选成功转移的细胞扩增培养,最后重新输入患者体内。如腺苷酸脱氨酶基因的转移。
②体内基因治疗:用基因工程的方法,直接向人体

知识拓展:

1、Bt毒蛋白基因产生的Bt毒蛋白并无毒性,进入昆虫消化道被分解成多肽后产生毒性。
2、青霉素是谤变后的高产青霉菌产生的,不是通过基因工程改造的工程菌产生的。
3、动物基因工程的应用主要体现在提高动物生长速度、改善畜产品品质、用转基因动物生产药物等方面。 4、动物基因工程主要为了改善畜产品的品质,不是为了产生体型巨大的个体。
5、乳腺生物反应器产量高、质量好、成本低、易提取,在高价值蛋白质的生产上比工厂化生产更具有优越性二。
6、用基因工程的方法,使外源基因得以高效表达的菌类细胞株系一般称为“工程菌”。
7、基因诊断是采用基因检测的方法来判断患者是否出现了基因异常或携带病原体。基因治疗指利用正常基因置换或弥补缺陷基因的治疗方法。
8、基因工程与环境保护
亲子鉴定:利用医学、生物学和遗传学的理论和技术,从子代和亲代的形态构造或生理机能方面的相似特点,分析遗传特征,判断父母与子女之间是否是亲生关系。
使用国产制剂进行亲子鉴定
鉴定亲子关系目前用得最多的是DNA分型鉴定。人的血液、毛发、唾液、口腔细胞及骨头等都可以用于亲子鉴定,十分方便。
利用DNA进行亲子鉴定,只要作十几至几十个DNA位点作检测,如果全部一样,就可以确定亲子关系,如果有3个以上的位点不同,则可排除亲子关系,有一两个位点不同,则应考虑基因突变的可能,加做一些位点的检测进行辨别。DNA亲子鉴定,否定亲子关系的准确率几近100%,肯定亲子关系的准确率可达到99.99%。
9、基因芯片的基本原理:就是最基本的DNA分子杂交,利用基因芯片检测某种基因时,先将待测样品制成荧光标记的DNA探针,让它与基因芯片上已知序列的DNA片段杂交,杂交信号经放大后输入计算机进行统计分析,这样就可以检测出样品DNA序列。
用途:用来检测基因表达的变化、分析基因序列、寻找新的基因和新的药物分子。利用基因芯片,可以比较同一物种不同个体或物种之间,以及同一个体在不同生长发育阶段、正常和疾病状态下基因表达的差异,寻找和发现新的基因,研究基因的功能以及生物体在进化、发育、遗传等过程中的规律。
发现相似题
与“2008年10月三位科学家因在发现和研究绿色荧光蛋白方面做出贡...”考查相似的试题有: