内容:
物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F
合=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s
2加速度的力,叫做1N(kg·m/s
2=N)。
对牛顿第二定律的理解:
①模型性
牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。
②因果性
力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。
③矢量性
合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。
④瞬时性
加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
⑤同一性(同体性)
中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
⑥相对性
在
中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。
⑦独立性
F
合产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度a
x;物体在y方向的合外力产生y方向的加速度a
y。牛顿第二定律分量式为:
。
⑧局限性(适用范围)
牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。
牛顿第二定律的应用:
1.应用牛顿第二定律解题的步骤:
(1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为m
i,对应的加速度为a
i,则有:F合=
对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:
,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。
(2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。
(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
(4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
2.两种分析动力学问题的方法:
(1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。
(2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。
①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:
(沿加速度方向),
(垂直于加速度方向)。
②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。
3.应用牛顿第二定律解决的两类问题:
(1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下:
(2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:
可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。
知识扩展:
1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。
2.关于a、△v、v与F的关系
(1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。
(2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为
,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。
(3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。
牛顿运动定律的应用:
1、牛顿运动定律
牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F
合=ma。
牛顿第三定律:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上。
2、应用牛顿运动定律解题的一般步骤
①认真分析题意,明确已知条件和所求量;
②选取研究对象,所选取的研究对象可以是一个物体,也可以是几个物体组成的系统,同一题,根据题意和解题需要也可先后选取不同的研究对象;
③分析研究对象的受力情况和运动情况;
④当研究对对象所受的外力不在一条直线上时;如果物体只受两个力,可以用平行四力形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上,分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动方向上;
⑤根据牛顿第二定律和运动学公式列方程,物体所受外力,加速度、速度等都可以根据规定的正方向按正、负值代公式,按代数和进行运算;
⑥求解方程,检验结果,必要时对结果进行讨论。
牛顿运动定律解决常见问题:
Ⅰ、动力学的两类基本问题:已知力求运动,已知运动求力
①根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况;根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。
②分析这两类问题的关键是抓住受力情况和运动情况的桥梁——加速度。
③求解这两类问题的思路,可由下面的框图来表示。
Ⅱ、超重和失重
物体有向上的加速度(向上加速运动时或向下减速运动)称物体处于超重,处于超重的物体对支持面的压力F
N(或对悬挂物的拉力)大于物体的重力mg,即F
N=mg+ma;物体有向下的加速度(向下加速运动或向上减速运动)称物体处于失重,处于失重的物体对支持面的压力F
N(或对悬挂物的拉力)小于物体的重力mg,即F
N=mg-ma。
Ⅲ、连接体问题
连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统。处理方法——整体法与隔离法:
当两个或两个以上的物体相对同一参考系具有相同加速度时,有些题目也可采用整体与隔离相结合的方法,一般步骤用整体法或隔离法求出加速度,然后用隔离法或整体法求出未知力。
Ⅳ、瞬时加速度问题
①两种基本模型
刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。
轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。
②解决此类问题的基本方法
a、分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);
b、分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);
c、求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。
Ⅴ、传送带问题
分析物体在传送带上如何运动的方法
①分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。具体方法是:
a、分析物体的受力情况
在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。
b、明确物体运动的初速度
分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。
c、弄清速度方向和物体所受合力方向之间的关系
物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。
②常见的几种初始情况和运动情况分析
a、物体对地初速度为零,传送带匀速运动(也就是将物体由静止放在运动的传送带上)
物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V
10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V
20是物体对地运动初速度。(以下的说明中个字母的意义与此相同)
物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。其加速度由牛顿第二定律
,求得
;
在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运动,如果传送带的长度足够长的话,最终物体与传送带相对静止,以传送带的速度V共同匀速运动。
b、物体对地初速度不为零其大小是V
20,且与V的方向相同,传送带以速度V匀速运动(也就是物体冲到运动的传送带上)
若V
20的方向与V的方向相同且V
20小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V
20的匀加速运动,直至与传送带达到共同速度匀速运动。
若V
20的方向与V的方向相同且V
20大于V,则物体相对于传送带向前运动,它受到的摩擦力方向向后,如图2所示,摩擦力f的方向与初速度V
20方向相反,物体相对于地做初速度是V
20的匀减速运动,一直减速至与传送带速度相同,之后以V匀速运动。
c、物体对地初速度V
20,与V的方向相反
如图3所示:物体先沿着V
20的方向做匀减速直线运动直至对地的速度为零。然后物体反方向(也就是沿着传送带运动的方向)做匀加速直线运动。
若V
20小于V,物体再次回到出发点时的速度变为-V
20,全过程物体受到的摩擦力大小和方向都没有改变。
若V
20大于V,物体在未回到出发点之前与传送带达到共同速度V匀速运动。
说明:上述分析都是认为传送带足够长,若传送带不是足够长的话,在图2和图3中物体完全可能以不同的速度从右侧离开传送带,应当对题目的条件引起重视。
物体在传送带上相对于传送带运动距离的计算
①弄清楚物体的运动情况,计算出在一段时间内的位移X
2。
②计算同一段时间内传送带匀速运动的位移X
1。
③两个位移的矢量之△X=X
2-X
1就是物体相对于传送带的位移。
说明:传送带匀速运动时,物体相对于地的加速度和相对于传送带的加速度是相同的。
传送带系统功能关系以及能量转化的计算
物体与传送带相对滑动时摩擦力的功
①滑动摩擦力对物体做的功
由动能定理
,其中X
2是物体对地的位移,滑动摩擦力对物体可能做正功,也可能做负功,物体的动能可能增加也可能减少。
②滑动摩擦力对传送带做的功
由功的概念得
,也就是说滑动摩擦力对传送带可能做正功也可能做负功。例如图2中物体的速度大于传送带的速度时物体对传送带做正功。
说明:当摩擦力对于传送带做负功时,我们通常说成是传送带克服摩擦力做功,这个功的数值等于外界向传送带系统输入能量。
③摩擦力对系统做的总功等于摩擦力对物体和传送带做的功的代数和。
即
结论:滑动摩擦力对系统总是做负功,这个功的数值等于摩擦力与相对位移的积。
④摩擦力对系统做的总功的物理意义是:物体与传送带相对运动过程中系统产生的热量,即
。
4、应用牛顿第二定律时常用的方法:整体法和隔离法、正交分解法、图像法、临界问题。