返回

高中三年级物理

首页
  • 计算题
    如图甲,电阻不计的轨道MONPRQ平行放置,ONRQ与水平面的倾角θ=53°,MO及PR部分的匀强磁场竖直向下,ONRQ部分的磁场平行轨道向下,磁场的磁感应强度大小相同,两根相同的导体棒ab和cd分别放置在导轨上,与导轨垂直并始终接触良好。棒的质量m=1.0kg,R=1.0Ω,长度与导轨间距相同,L=1.0m,棒与导轨间动摩擦因数μ=0.5,现对ab棒施加一个方向向右,大力随乙图规律变化的力F的作用,同时由静止释放cd棒,则ab棒做初速度为零的匀加速直线运动,g取10m/s2,求:
    (1)ab棒的加速度大小;
    (2)磁感应强度B的大小;
    (3)若已知在前2s内外力做功W=30J,求这一过程中电路产生的焦耳热;
    (4)求cd棒达到最大速度所需的时间。
       

    本题信息:2012年宁夏自治区模拟题物理计算题难度较难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “如图甲,电阻不计的轨道MON与PRQ平行放置,ON及RQ与水平面的倾角θ=53°,MO及PR部分的匀强磁场竖直向下,ON及RQ部分的磁场平行轨道向下,磁场的磁感应强度大小...” 主要考查您对

共点力的平衡

牛顿运动定律的应用

动能定理

磁感应强度

磁场对通电导线的作用:安培力、左手定则

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 共点力的平衡
  • 牛顿运动定律的应用
  • 动能定理
  • 磁感应强度
  • 磁场对通电导线的作用:安培力、左手定则
共点力:

作用在物体的同一点,或作用线相交于一点的几个力。

平衡状态:

物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态。

共点力作用下的物体的平衡条件:

物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx=0,∑Fy=0。

解决平衡问题的常用方法:

隔离法、整体法、图解法、三角形相似法、正交分解法等。
图解法分析分力与合力的关系:

当两个分力成一定的夹角α(α<180)时,增大其中一个分力或使两个分力都增大,合力的变化情况如何呢?这个问题可以用数学公式推导分析,也可以用函数图像数形结合分析,但最简捷有效的方法是图解法。为了便于分析合力的变化,设,借助辅助参考圆来进行分析。如图所示,F1、F2的共点在圆心,而且开始时F1、F2的合力为F,大小恰好为圆的半径。

(1)当保持力F2不变,只增大F1时,如图所示,合力,的大小可能出现三种情况:减小、不变或增大,即 。我们可以得到这样的结论:当两个力F1、F1夹角α保持不变,在增大其中一个分力时,它们的合力大小可能减小、不变或增大。
 
(2)当两个分力F1、F2都增大时,如图所示,合力F 的大小也有可能出现三种情况:减小、不变或增大,即,我们也可以得到这样的结论:当两个力F1、F2夹角α保持不变,在同时增大两个分力时,它们的合力F大小可能减小、不变或增大。


整体法与隔离法:

(1)整体法:当只涉及研究系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。运用整体法解题的基本步骤是:
①明确研究的系统和运动的全过程;
②画出系统整体的受力图和运动全过程的示意图;
③选用适当的物理规律列方程求解。
(2)隔离法:为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。运用隔离法解题的基本步骤是:
①明确研究对象或过程、状态;
②将某个研究对象或某段运动过程、某个状态从全过程中隔离出来;
③画出某状态下的受力图或运动过程示意图;
④选用适当的物理规律列方程求解。隔离法和整体法常常需交叉运用,从而优化解题思路和方法,使解题简捷明了。
受力分析的一般顺序:

(1)明确研究对象,研究对象可以是质点、结点、物体、物体系。
(2)找出所有接触点。
(3)按顺序分析物体受力。一般先分析场力(重力、电场力、磁场力等不接触力).再依次对每一接触点分析弹力、摩擦力。
(4)找出每个力的施力物体。(防“多”分析力)
(5)看受力与运动状态是否相符。(防“漏”力、 “错”力)
(6)正确画出受力图。注意不同对象的受力图用隔离法分别画出,对于质点和不考虑力对物体的形变和转动效果的情况,可将各力平移至物体的重心上,即各力均从重心画起。

受力分析的步骤:

第一步:隔离物体。隔离物体就是把被分析的那个物体或系统单独画出来,而不要管其周围的其他物体,这是受力分析的基础。
第二步:在已隔离的物体上画出重力和其他已知力。重力是一个已知力,可首先把它画出来。另外,物体往往在重力及其他主动力作用下才与其他物体产生挤压、拉伸以及相对运动等,进而产生弹力和摩擦力,所以还要分析其他主动力。第三步:查找接触点和接触面。就是查找被分析物体与其他物体的接触点和接触面。弹力和摩擦力是接触力,其他物体对被分析物体的弹力和摩擦力只能通过接触点和接触面来作用,这就是说寻找物体所受的弹力(拉力、压力、支持力等)和摩擦力只能在被分析物体与其他物体相接触的点和面上找。查找接触点和接触面要全,每个接触点或面上最多有两个力(一个弹力,一个摩擦力)。
第四步:分析弹力(拉力、压力、支持力等)。在被分析物体与其他物体的接触处,如果有形变(挤压或拉伸),则该处就有弹力,反之则没有。在确定弹力存在以后,其方向就比较容易确定了。
第五步:分析摩擦力。摩擦力分静摩擦力和滑动摩擦力,它们的产生条件是两物体接触处不光滑,除挤压外还要有相对滑动的趋势或相对滑动。因此分析接触面上有无摩擦力,首先要看接触面是否光滑(这是题目中的已知条件),其次看有无弹力,然后再进行摩擦力的判断:接触面上有相对滑动时有滑动摩擦力,其大小,方向跟物体的相对运动方向相反;接触面上无相对滑动但有相对滑动趋势时有静摩擦力,它的大小和方向总是跟迫使物体产生相对滑动趋势的外力有关。

受力分析中的技巧:

(1)研究对象的受力图,通常只画出根据性质命名的力,不要把按效果分解的分力或合力分析进去,受力图完成后再进行力的合成或分解。
(2)区分内力和外力。对几个物体的整体进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现;当把某一物体单独隔离分析时,原来的内力变成了外力,要画在受力图上。
(3)在难以确定物体的某些受力情况时,可先根据 (或确定)物体的运动状态,再运用平衡条件或牛顿运动定律来判定未知力。也就是说在分析物体受力时要时刻结合研究对象所处的运动状态,同时对不易确定的力。可结合牛顿第三定律来分析其反作用力是否存在以及方向如何等情况。
牛顿运动定律的应用:

1、牛顿运动定律
牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=ma。
牛顿第三定律:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上。
2、应用牛顿运动定律解题的一般步骤
①认真分析题意,明确已知条件和所求量;
②选取研究对象,所选取的研究对象可以是一个物体,也可以是几个物体组成的系统,同一题,根据题意和解题需要也可先后选取不同的研究对象;
③分析研究对象的受力情况和运动情况;
④当研究对对象所受的外力不在一条直线上时;如果物体只受两个力,可以用平行四力形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上,分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动方向上;
⑤根据牛顿第二定律和运动学公式列方程,物体所受外力,加速度、速度等都可以根据规定的正方向按正、负值代公式,按代数和进行运算;
⑥求解方程,检验结果,必要时对结果进行讨论。
牛顿运动定律解决常见问题:

Ⅰ、动力学的两类基本问题:已知力求运动,已知运动求力
①根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况;根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。
②分析这两类问题的关键是抓住受力情况和运动情况的桥梁——加速度。
③求解这两类问题的思路,可由下面的框图来表示。

Ⅱ、超重和失重
物体有向上的加速度(向上加速运动时或向下减速运动)称物体处于超重,处于超重的物体对支持面的压力FN(或对悬挂物的拉力)大于物体的重力mg,即FN=mg+ma;物体有向下的加速度(向下加速运动或向上减速运动)称物体处于失重,处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg,即FN=mg-ma。
Ⅲ、连接体问题
连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统。处理方法——整体法与隔离法:

当两个或两个以上的物体相对同一参考系具有相同加速度时,有些题目也可采用整体与隔离相结合的方法,一般步骤用整体法或隔离法求出加速度,然后用隔离法或整体法求出未知力。
Ⅳ、瞬时加速度问题
①两种基本模型
        刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。
        轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。
②解决此类问题的基本方法
a、分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);
b、分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);
c、求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。
Ⅴ、传送带问题
分析物体在传送带上如何运动的方法
①分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。具体方法是:
a、分析物体的受力情况
        在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。
b、明确物体运动的初速度
        分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。
c、弄清速度方向和物体所受合力方向之间的关系
        物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。
②常见的几种初始情况和运动情况分析
a、物体对地初速度为零,传送带匀速运动(也就是将物体由静止放在运动的传送带上)
        物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。(以下的说明中个字母的意义与此相同)

        物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。其加速度由牛顿第二定律,求得
        在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运动,如果传送带的长度足够长的话,最终物体与传送带相对静止,以传送带的速度V共同匀速运动。
b、物体对地初速度不为零其大小是V20,且与V的方向相同,传送带以速度V匀速运动(也就是物体冲到运动的传送带上)
        若V20的方向与V的方向相同且V20小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V20的匀加速运动,直至与传送带达到共同速度匀速运动。
        若V20的方向与V的方向相同且V20大于V,则物体相对于传送带向前运动,它受到的摩擦力方向向后,如图2所示,摩擦力f的方向与初速度V20方向相反,物体相对于地做初速度是V20的匀减速运动,一直减速至与传送带速度相同,之后以V匀速运动。

c、物体对地初速度V20,与V的方向相反
        如图3所示:物体先沿着V20的方向做匀减速直线运动直至对地的速度为零。然后物体反方向(也就是沿着传送带运动的方向)做匀加速直线运动。
        若V20小于V,物体再次回到出发点时的速度变为-V20,全过程物体受到的摩擦力大小和方向都没有改变。
        若V20大于V,物体在未回到出发点之前与传送带达到共同速度V匀速运动。

        说明:上述分析都是认为传送带足够长,若传送带不是足够长的话,在图2和图3中物体完全可能以不同的速度从右侧离开传送带,应当对题目的条件引起重视。
物体在传送带上相对于传送带运动距离的计算
①弄清楚物体的运动情况,计算出在一段时间内的位移X2
②计算同一段时间内传送带匀速运动的位移X1
③两个位移的矢量之△X=X2-X1就是物体相对于传送带的位移。
说明:传送带匀速运动时,物体相对于地的加速度和相对于传送带的加速度是相同的。
传送带系统功能关系以及能量转化的计算
物体与传送带相对滑动时摩擦力的功
①滑动摩擦力对物体做的功
由动能定理,其中X2是物体对地的位移,滑动摩擦力对物体可能做正功,也可能做负功,物体的动能可能增加也可能减少。
②滑动摩擦力对传送带做的功
由功的概念得,也就是说滑动摩擦力对传送带可能做正功也可能做负功。例如图2中物体的速度大于传送带的速度时物体对传送带做正功。
说明:当摩擦力对于传送带做负功时,我们通常说成是传送带克服摩擦力做功,这个功的数值等于外界向传送带系统输入能量。
③摩擦力对系统做的总功等于摩擦力对物体和传送带做的功的代数和。

结论:滑动摩擦力对系统总是做负功,这个功的数值等于摩擦力与相对位移的积。
④摩擦力对系统做的总功的物理意义是:物体与传送带相对运动过程中系统产生的热量,即
4、应用牛顿第二定律时常用的方法:整体法和隔离法、正交分解法、图像法、临界问题。

动能定理:


动能定理的应用方法技巧:

 1.应用动能定理解题的基本思路
(1)选取研究对象,明确并分析运动过程。
(2)分析受力及各力做功的情况,求出总功:
 
(3)明确过程始、末状态的动能
(4)列方程,必要时注意分析题目潜在的条件,列辅助方程进行求解。
2.应用动能定理应注意的几个问题
(1)明确研究对象和研究过程,找出始末状态的速度。
(2)要对物体正确地进行受力分析,明确各力做功的大小及正负情况(待求的功除外)。
(3)有些力在物体运动过程中不是始终存在的。若物体运动过程中包括几个阶段,物体在不同阶段内的受力情况不同,在考虑外力做功时需根据情况区分对待。
3.几种应用动能定理的典型情景
(1)应用动能定理求路程在多阶段或往返运动中,如果摩擦力或介质阻力大小不变,方向与速度方向关系恒相反,则在整个过程中克服摩擦力或介质阻力所做的功等于力与路程的乘积,从而可将物体在摩擦力或介质阻力作用下通过的路程与动能定理联系起来。
(2)应用动能定理求解多过程问题物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程根据动能定理列式求解,则可以使问题简化。根据题意灵活地选取研究过程,可以使问题变得简单。有时取全过程简单,有时取某一阶段简单。原则是尽量使做功的力减少,各个力的功计算方便,或使初、未动能等于零。
(3)用动能定理求变力的功变力的功无法用公式直接求解,有时该力也不是均匀变化的,无法用高中知识表达平均力,此时可以考虑用动能定理间接求解。涉及功、能的极值问题在涉及功、能的极值问题中,有些极值的形成是南运动形式的临界状态造成的。如竖直平面内圆周运动的最高点、平抛运动等。有些极值的形成是由题设条件造成的。在解决涉及功、能的极值问题时,一种思路是分析运动形式的临界状态,将临界条件转化为物理方程来求解;另一种思路是将运动过程的方程解析式化,利用数学方法求极值。


知识拓展:

 1.总功的计算物体受到多个外力作用时,计算合外力的功,一般有如下三种方法:
(1)先由力的合成与分解法或根据牛顿第二定律求出合力,然后由计算。采用此法计算合力的总功时,一是要求各力同时作用在物体上。二是要求合外力是恒力。
(2)由计算各个力对物体做的功,然后将各个外力所做的功求代数和。当多阶段运动过程中不同阶段物体所受外力不同,即外力分阶段作用在物体上时常用此法求外力的总功。
(3)外力做的总功等于物体动能的变化量,在物体初、末状态已知的情况下可考虑从动能变化量来确定合外力做的功。
2.系统动能定理
动能定理实质上是一个质点的功能关系,是针对单体或可看做单个物体的物体系而言的。所谓能看成单个物体的物体系,简单来说就是物体系内各物体之间的相对位置不变,从而物体系的各内力做功之和为零.物体系的动能变化就取决于所有外力做的总功了。
但是对于不能看成单个物体的物体系或不能看成质点的物体,可将其看成是由大量质点组成的质点系,对质点系组成的系统应用动能定理时,就不能仅考虑外力的作用,还需考虑内力所做的功。即:

如人在从地面上竖直跳起的过程中,只受到了重力、地面支持力两个力的作用,而人从下蹲状态到离开地面的过程中,支持力不对人做功,重力对人做负功,但人的动能增加了,原因就在于此过程中人不能被看成单一的质点,人体内肌肉、骨骼之间的内力对人也做功。再如光滑水平面上由静止释放两带异种电荷的小球,对两小球组成的系统来说,没有外力对它们做功,但它们的动能却增加了,原因也在于它们的内力对它们做了功。
3.动能、动能的变化与动能定理的比较:


磁感应强度:

定义 在磁场中垂直于磁场方向的通电直导线,受到安培力F的作用,F跟电流I和导线长度L的乘积IL的比值,叫做磁场的磁感应强度,用符号B表示
定义式  (导体与磁场垂直)
意义 磁感应强度是表征磁场强弱的物理量
方向 其方向就是磁场方向,即小磁针静止时N极所指的方向
磁场叠加 若空间存在几个磁场,空间的磁场应由这几个磁场叠加而成,某点的磁感应强度为(矢量和)
单位 特斯拉,简称特,符号
备注 为磁感应强度的定义式,B与F、IL无关
②磁场方向与放在该处的小磁体N极受力方向一致,与S极受力方向相反;与放在该处能够自由转动的小磁针静止时N极所指方向一致,与S极所指方向相反;与放在该处的通电导线受力方向是相垂直的

磁感应强度B与电场强度E的比较:




安培力与洛伦兹力:




通电导线在安培力作用下运动方向的判定方法:

要判定通电导线在安培力作用下的运动,首先必须清楚导线所在位置磁场的分布情况,然后才能结合左手定则准确判定导线的受力情况,进而确定导线的运动方向。常用的方法如下: 1.电流元法
(1)同一磁场中的弯曲导线

把整段弯曲导线分为多段直线电流元,先用左手定则判定每段电流元受力的方向,然后判定整段导线所受合力的方向,从而确定导线的运动方向,如在图中,要判定导线框abcd的受力可将其分为四段来判定,若将导线框换作导线环时,可将其分为多段直线电流元。
(2)不同磁场区域中的直线电流当直导线处于不同的磁场区域中时,可根据导线本身所处的物理情景,将导线适当分段处理,如图甲中,要判定可自由运动的通电直导线AB在蹄形磁铁作用下的运动情况时,以蹄形磁铁的中轴线OO’为界,直导线在OO’两侧所处的磁场截然不同,则可将AB以OO’为分界点分为左右两段来判定。

2.特殊位置法因电流所受安培力的方向是垂直于电流和磁场所决定的平面的,虽然电流与磁场之间夹角不同时电流所受安培力大小不同,但所受安培力的方向是不变的 (要求电流从平行于磁场的位置转过的角度不超过 180)。故可通过转动通电导线到某个便于分析的特殊位置,然后判定其所受安培力的方向,从而确定其运动方向。如在上图甲中,初始位置磁场在平行于电流方向上的分量对电流无作用力,但一旦离开初始位置,此磁场分量就会对电流产生作用力,如上图乙所示。但此分量对电流在转动过程中作用力的方向不方便判定.可将此导线转过90,此时电流方向与该磁场分量方向垂直,用左手定则很容易判定出受力方向,如上图丙所示,
3.等效法
(1)从磁体或电流角度等效
环形电流可以等效成小磁针,通电螺线管可以等效成条形磁铁或多个环形电流,反过来等效也成立。将环形电流与小磁针相互等效时,它们的位置关系可以认为是小磁针位于环形电流的中心处,N、S极连线与环面垂直,且N、S极与电流方向遵从安培定则。如在图中,两通电圆环同心,所在平面垂直,要判定可自南转动的圆环,I2的运动情况,可将其等效为一小磁针。
(2)从磁感线分布情况的角度等效
根据要判定的电流或磁体所在处的磁感线分布,将其所在处的磁场等效为某一能够在该处产生类似磁场的场源电流或磁体,然后再用电流之间或磁体之间相互作用的规律来判定。如在图中,导线AB所在处的磁感线分布与位于其下方与纸面垂直的通电直导线在该处产生的磁感线类似(注意是类似而不是相同),所以可以将蹄形磁铁等效为一通电直导线进而进行判定。

4.结论法
当两电流之间或两等效电流之间发生相互作用时,可利用电流之间相互作用的规律直接判定,只是同前所述,此法应慎用。
(1)两平行直线电流在相互作用过程中,无转动趋势,同向电流互相吸引,反向电流互相排斥;
(2)两不平行的直线电流互相作用时,有转到平行且电流方向相同的趋势。
5.转换研究对象法
定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,确定磁体所受电流磁场的作用力,从而确定磁体所受的合力及运动方向。如在图中要判定磁铁所受电流的作用力,可以分析磁铁对电流的作用力。


安培力作用下力学问题的解决方法:

由于安培力的方向总是垂直于电流方向与磁场方向决定的平面,即F一定垂直于B和I,但B和I不一定垂直。因此涉及安培力的问题常呈现于三维空间中,要解决这类问题,需从合适的方位将立体图改画为二维平面图,再通过受力分析及运动情况分析,结合平衡条件或牛顿运动定律解题。


发现相似题
与“如图甲,电阻不计的轨道MON与PRQ平行放置,ON及RQ与水平面的...”考查相似的试题有: