经典力学的局限性:
1、从低速到高速——狭义相对论:当物体运动的速度比真空中的光速小得多时,质量、时间和长度的变化很小,可以忽略,经典力学完全适用。但如果物体运动速度可以和光速相比较时,质量、时间和长度的变化就很大,经典力学就不再适用,狭义相对论阐述了物体在以接近光速运动时所遵循的规律。
2、从宏观到微观——量子力学:物理学研究深入到微观世界,发现微观粒子不但具有粒子的性质,还能产生干涉、衍射现象。干涉和衍射是波所特有的性质。也就是说微观粒子具有波动性。这是牛顿经典力学无法解释的。正是在这种情形下,量子力学应运而生,量子力学能够很好地解释微观粒子的运动规律。
3、从弱引力到强引力——广义相对论:天文观测发现行星的轨道并不严格闭合,它们的近日点在不断地旋进。这种现象称为行星的轨道旋进。这是用牛顿万有引力定律无法得到满意解释的。爱因斯坦创立了广义相对论,根据广义相对论计算出的水星近日点的旋进与天文观测能很好地吻合, 爱因斯坦创立的广义相对论是一种新的时空引力理论,爱因斯坦还根据广义相对论预言了光线在经过大质量星体附近时会发生偏转,这也是被天文观测所证实的。
万有引力定律:
1、内容:宇宙间的一切物体都是互相吸引的。两个物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比。
2、表达式:
,G=6.67×10
-11 N·m
2/kg
2。
3、适用条件:适用于相距很远,可以看做质点的两物体间的相互作用,质量分布均匀的球体也可用此公式计算,其中r指球心间的距离。
重力和万有引力的关系:
物体重力是地球引力的一个分力。如图,万有引力F的另一个分力F
1是使物体随地球做匀速圆周运动所需的向心力。越靠近赤道(纬度越低),物体绕地轴运动的向心力F
1就越大,重力就越小;反之,纬度越高(靠近地球两极),物体绕地轴随地球一起运动的向心力F
1就越小,重力就越大。在两极,重力等于万有引力;在赤道,万有引力等于重力加上向心力。
①物体的重力随地面高度h的变化情况:物体的重力近似地球对物体的吸引力,即近似等于
,可见物体的重力随h的增大而减小,由G=mg得g随h的增大而减小。
②在地球表面(忽略地球自转影响):
(g为地球表面重力加速度,r为地球半径)。
③当物体位于地面以下时,所受重力也比地面要小,物体越接近地心,重力越小,物体在地心时,其重力为零。
开普勒行星运动定律: