牛顿运动定律的应用:
1、牛顿运动定律
牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F
合=ma。
牛顿第三定律:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上。
2、应用牛顿运动定律解题的一般步骤
①认真分析题意,明确已知条件和所求量;
②选取研究对象,所选取的研究对象可以是一个物体,也可以是几个物体组成的系统,同一题,根据题意和解题需要也可先后选取不同的研究对象;
③分析研究对象的受力情况和运动情况;
④当研究对对象所受的外力不在一条直线上时;如果物体只受两个力,可以用平行四力形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上,分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动方向上;
⑤根据牛顿第二定律和运动学公式列方程,物体所受外力,加速度、速度等都可以根据规定的正方向按正、负值代公式,按代数和进行运算;
⑥求解方程,检验结果,必要时对结果进行讨论。
牛顿运动定律解决常见问题:
Ⅰ、动力学的两类基本问题:已知力求运动,已知运动求力
①根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况;根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。
②分析这两类问题的关键是抓住受力情况和运动情况的桥梁——加速度。
③求解这两类问题的思路,可由下面的框图来表示。
Ⅱ、超重和失重
物体有向上的加速度(向上加速运动时或向下减速运动)称物体处于超重,处于超重的物体对支持面的压力F
N(或对悬挂物的拉力)大于物体的重力mg,即F
N=mg+ma;物体有向下的加速度(向下加速运动或向上减速运动)称物体处于失重,处于失重的物体对支持面的压力F
N(或对悬挂物的拉力)小于物体的重力mg,即F
N=mg-ma。
Ⅲ、连接体问题
连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统。处理方法——整体法与隔离法:
当两个或两个以上的物体相对同一参考系具有相同加速度时,有些题目也可采用整体与隔离相结合的方法,一般步骤用整体法或隔离法求出加速度,然后用隔离法或整体法求出未知力。
Ⅳ、瞬时加速度问题
①两种基本模型
刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。
轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。
②解决此类问题的基本方法
a、分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);
b、分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);
c、求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。
Ⅴ、传送带问题
分析物体在传送带上如何运动的方法
①分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。具体方法是:
a、分析物体的受力情况
在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。
b、明确物体运动的初速度
分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。
c、弄清速度方向和物体所受合力方向之间的关系
物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。
②常见的几种初始情况和运动情况分析
a、物体对地初速度为零,传送带匀速运动(也就是将物体由静止放在运动的传送带上)
物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V
10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V
20是物体对地运动初速度。(以下的说明中个字母的意义与此相同)
物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。其加速度由牛顿第二定律
,求得
;
在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运动,如果传送带的长度足够长的话,最终物体与传送带相对静止,以传送带的速度V共同匀速运动。
b、物体对地初速度不为零其大小是V
20,且与V的方向相同,传送带以速度V匀速运动(也就是物体冲到运动的传送带上)
若V
20的方向与V的方向相同且V
20小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V
20的匀加速运动,直至与传送带达到共同速度匀速运动。
若V
20的方向与V的方向相同且V
20大于V,则物体相对于传送带向前运动,它受到的摩擦力方向向后,如图2所示,摩擦力f的方向与初速度V
20方向相反,物体相对于地做初速度是V
20的匀减速运动,一直减速至与传送带速度相同,之后以V匀速运动。
c、物体对地初速度V
20,与V的方向相反
如图3所示:物体先沿着V
20的方向做匀减速直线运动直至对地的速度为零。然后物体反方向(也就是沿着传送带运动的方向)做匀加速直线运动。
若V
20小于V,物体再次回到出发点时的速度变为-V
20,全过程物体受到的摩擦力大小和方向都没有改变。
若V
20大于V,物体在未回到出发点之前与传送带达到共同速度V匀速运动。
说明:上述分析都是认为传送带足够长,若传送带不是足够长的话,在图2和图3中物体完全可能以不同的速度从右侧离开传送带,应当对题目的条件引起重视。
物体在传送带上相对于传送带运动距离的计算
①弄清楚物体的运动情况,计算出在一段时间内的位移X
2。
②计算同一段时间内传送带匀速运动的位移X
1。
③两个位移的矢量之△X=X
2-X
1就是物体相对于传送带的位移。
说明:传送带匀速运动时,物体相对于地的加速度和相对于传送带的加速度是相同的。
传送带系统功能关系以及能量转化的计算
物体与传送带相对滑动时摩擦力的功
①滑动摩擦力对物体做的功
由动能定理
,其中X
2是物体对地的位移,滑动摩擦力对物体可能做正功,也可能做负功,物体的动能可能增加也可能减少。
②滑动摩擦力对传送带做的功
由功的概念得
,也就是说滑动摩擦力对传送带可能做正功也可能做负功。例如图2中物体的速度大于传送带的速度时物体对传送带做正功。
说明:当摩擦力对于传送带做负功时,我们通常说成是传送带克服摩擦力做功,这个功的数值等于外界向传送带系统输入能量。
③摩擦力对系统做的总功等于摩擦力对物体和传送带做的功的代数和。
即
结论:滑动摩擦力对系统总是做负功,这个功的数值等于摩擦力与相对位移的积。
④摩擦力对系统做的总功的物理意义是:物体与传送带相对运动过程中系统产生的热量,即
。
4、应用牛顿第二定律时常用的方法:整体法和隔离法、正交分解法、图像法、临界问题。
带电粒子在电场中运动的综合应用:
1、带电粒子在电场中的平衡问题:
带电粒子在电场中处于静止或匀速直线运动状态时,则粒子在电场中处于平衡状态。假设匀强电场的两极板间的电压为U,板间的距离为d,则:mg=qE=
,有q=
。
2、带电粒子在电场中的加速问题:
带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量。
3、带电粒子在电场中的偏转问题:
带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动。
垂直于场强方向做匀速直线运动:V
x=V
0,L=V
0t;
平行于场强方向做初速为零的匀加速直线运动:
,
,
,偏转角:
。
4、粒子在交变电场中的往复运动
当电场强度发生变化时,由于带电粒子在电场中的受力将发生变化,从而使粒子的运动状态发生相应的变化,粒子表现出来的运动形式可能是单向变速直线运动,也可能是变速往复运动。带电粒子是做单向变速直线运动,还是做变速往复运动主要由粒子的初始状态与电场的变化规律(受力特点)的形式有关。
①若粒子(不计重力)的初速度为零,静止在两极板间,再在两极板间加上甲图的电压,粒子做单向变速直线运动;若加上乙图的电压,粒子则做往复变速运动。
②若粒子以初速度为v
0从B板射入两极板之间,并且电场力能在半个周期内使之速度减小到零,则甲图的电压能使粒子做单向变速直线运动;则乙图的电压也不能粒子做往复运动。所以这类问题要结合粒子的初始状态、电压变化的特点及规律、再运用牛顿第二定律和运动学知识综合分析。
注:是否考虑带电粒子的重力要根据具体情况而定,一般说来:
①基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量);
②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力。
电场中无约束情况下的匀速圆周运动:
1.物体做匀速圆周运动的条件从力与运动的关系来看,物体要做匀速圆周运动,所受合外力必须始终垂直于物体运动的方向,而且大小要恒等于物体所需的向心力。冈此,物体做匀速圆周运动时必须受到变力的作用,或者不受恒力的作用,或者恒力能被平衡。
2.在静电力作用下的匀速圆周运动在不考虑带电粒子的重力作用时,带电粒子有两种情况可以做匀速圆周运动。
(1)在带有异种电荷的同定点电荷周围。
(2)在等量同种点电荷的中垂面上,运动电荷与场源电荷异性。在这种情境中,还要求运动电荷所具有的初速度要与所受到的电场力垂直,且满足合外力等于所需向心力的条件。否则运动电荷可能做直线运动、椭圆运动等。
3.有重力参与的匀速圆周运动重力是一恒力,带电粒子要做匀速圆周运动,重力必须被平衡,一种方式是利用水平支撑面的弹力,一种方式是利用变化的电场力的某一分力。
带电粒子所受重力的处理方法:
是否考虑重力要依据具体情况而定:
(1)微观粒子:如电子、质子、α粒子、离子等,除有说明或明确的暗示外,一般不考虑重力(但不能忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。
(3)有些情况下是否考虑粒子的重力需要用假设法从粒子的运动上来分析,若考虑粒子的重力,粒子的运动与题目给定的运动状态不符合,则不需考虑重力;若不考虑粒子所受到的重力,粒子不能完成题目给定的运动过程就必须考虑重力。
(4)在给定具体数据的情况下还可以通过定量计算来选择是否考虑重力的作用,一般说来重力与电场力相差两个甚至两个以上的数量级,粒子的重力就可以忽略。
匀强电场与重力场的复合场问题的处理方法:
1.动力学观点的两种方法
(1)正交分解法:处理这种运动的基本思想与处理偏转运动是类似的,可以将此复杂的运动分解为两个互相正交的比较简单的直线运动,然后再按运动合成的观点去求出复杂运动的有关物理量。
(2)等效“重力”法:将重力与电场力进行合成,如图所示,则等效于“重力”,等效于“重力加速度”
的方向,等效于“重力”的方向,即在重力场中竖直向下的方向。
2.功能观点的解决方法
(1)从功能观点出发分析带电粒子的运动问题时,在对带电粒子受力情况和运动情况进行分析的基础上,再考虑应用恰当的规律解题。如果选用动能定理,要分清有几个力做功,做正功还是负功,是恒力做功还是变力做功,以及初、未状态的动能。
(2)如果选用能垃守恒定律解题,要分清有多少种形式的能参与转化,哪种形式的能增加,哪种形式的能减少,并注意电场力做功与路径无关。
带电粒子在交变电场中运动问题的解决方法:
带电粒子在极板问加速或偏转时,若板间所加电压为一交变电压,则粒子在板间的运动可分两种情况处理:一是粒子在板间运动时间t远小于交变电压的周期T;二是粒子在板间运动时间t与交变电压变化周期 T相差不大甚至t>T。
第一种情况下需采用近似方法处理,可认为在粒子运动的整个过程的短暂时问内,板间电压恒等于粒子入射时的电压,即在粒子运动过程中,板间电压按恒压处理,且等于粒子入射时的瞬时电压。
第二种情况下粒子的运动过程较为复杂,可借助于粒子运动的速度图像。物理图像是表达物理过程、规律的基本工具之一,用图像反映物理过程、规律,具有直观、形象的特点,带电粒子在交变电场中运动时,受电场力作用,其加速度、速度等均做周期性变化,借助图像来描述它在电场中的运动情况,可直观展示物理过程,从而获得启迪,快捷地分析求解。在有交变电场作用下带电粒子运动的问题中,有一类重要问题是判定带电粒子能从极板间穿出的条件或侧移量、偏转角范围等问题。而解决此类问题的关键是找出粒子恰好能从板间飞出的临界状态:恰好从极板边缘飞出,并将其转换为临界状态方程。
带电粒子在接地极板间运动问题的解决方法:
当粒子在平行金属板间运动时,若一个极板接地,会对粒子的运动造成什么影响呢?这需分两种情况来考虑:
(1)粒子运动过程巾与极板之间无接触,极板接地只是确定极板电势的高低,这种情况下极板接地与否对粒子的运动不产生影响。
(2)一个极板接地,当运动电荷与另一极板接触而使电荷量变化,则接地的极板也就会与大地之问发生电荷的转移,从而确保两极板所带电荷量相等,但电荷量变化时,极间电场也随之发生变化。