返回

高中一年级物理

首页
  • 计算题
    如图所示,一水平圆盘绕过圆心的竖直轴转动,圆盘边缘有一质量m=1.0 kg的小滑块。当圆盘转动的角速度达到某一数值时,滑块从圆盘边缘滑落,经光滑的过渡圆管进入轨道ABC。已知AB段斜面倾角为53°,BC段斜面倾角为37°,滑块与圆盘及斜面间的动摩擦因数均μ=0.5,A点离B点所在水平面的高度h=1.2 m。滑块在运动过程中始终未脱离轨道,不计在过渡圆管处和B点的机械能损失,最大静摩擦力近似等于滑动摩擦力,取g=10 m/s2,sin37°=0.6,cos37°=0.8。
    (1)若圆盘半径R=0.2 m,当圆盘的角速度多大时,滑块从圆盘上滑落?
    (2)若取圆盘所在平面为零势能面,求滑块到达B点时的机械能。
    (3)从滑块到达B点时起,经0.6 s正好通过C点,求BC之间的距离。

    本题信息:2012年江苏期中题物理计算题难度较难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “如图所示,一水平圆盘绕过圆心的竖直轴转动,圆盘边缘有一质量m=1.0 kg的小滑块。当圆盘转动的角速度达到某一数值时,滑块从圆盘边缘滑落,经光滑的过渡圆管...” 主要考查您对

匀变速直线运动的位移与速度的关系

角速度

动能定理

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 匀变速直线运动的位移与速度的关系
  • 角速度
  • 动能定理

匀变速直线运动的速度-位移公式:

vt2-v02=2as。

适用条件:

匀变速直线运动


匀变速直线运动的速度-位移公式推导:

可得,将t代入,即

注意:

是由公式推导而出,一般情况下,对同一过程不能联立三式求解。
②关系式中一共有四个物理量,若求其中的一个物理量,需要知道其他的三个物理量。由可推得(v取正值还是负值根据情况判断),
③位移与速度的关系式为矢量式,应用它解题时,若规定初速度的方向为正方向,a与同向时为正值,物体做匀加速运动,a与反向时为负值,物体做匀减速运动。位移,说明物体通过的位移的方向与物体的初速度的方向相同,位移,说明位移的方向与初速度的方向相反。


知识点拨:

对位移和速度关系的两点提醒:

  1. 注意同一性,即应是同一研究对象在同一运动过程中的初速度、末速度、加速度及发生的位移。
  2. 注意矢量性,即以方向为正方向,其余三量与初速度的方向相同则为正,相反则为负。

当初速度为零时:

初速度为 初速度为0
速度公式
位移公式
速度—位移公式

 角速度的定义:

圆周运动中,连接质点和圆心的半径转过的角度跟所用时间的比值叫做角速度。

                                                                                


角速度的特性:

角速度是矢量,高中阶段不研究其方向。它是描述做圆周运动的物体绕圆心转动快慢的物理量
单位:在国际单位制中,单位是“弧度/秒”(rad/s)。(1rad=360d°/(2π)≈57°17'45″)
转动周数时(例如:每分钟转动周数),则以转速来描述转动速度快慢。角速度的方向垂直于转动平面,可通过右手螺旋定则来确定。(角速度的方向,在高中物理的学习不属于考察的内容)


线速度和角速度的对比:
角速度是单位时间转过的角度;或者说是转过的角度和所用时间的比值。
线速度是单位时间走过的弧长;或者说是弧长和所用时间的比值。

角速度和线速度的关系:


知识拓展提升:

  例:计算地球和月亮公转的角速度:


通过计算知道,书中所提到的地球和月球的争论是没有结论的。比较运动得快慢,要看比较线速度还是角速度,不能简单说谁快谁慢。


动能定理:


动能定理的应用方法技巧:

 1.应用动能定理解题的基本思路
(1)选取研究对象,明确并分析运动过程。
(2)分析受力及各力做功的情况,求出总功:
 
(3)明确过程始、末状态的动能
(4)列方程,必要时注意分析题目潜在的条件,列辅助方程进行求解。
2.应用动能定理应注意的几个问题
(1)明确研究对象和研究过程,找出始末状态的速度。
(2)要对物体正确地进行受力分析,明确各力做功的大小及正负情况(待求的功除外)。
(3)有些力在物体运动过程中不是始终存在的。若物体运动过程中包括几个阶段,物体在不同阶段内的受力情况不同,在考虑外力做功时需根据情况区分对待。
3.几种应用动能定理的典型情景
(1)应用动能定理求路程在多阶段或往返运动中,如果摩擦力或介质阻力大小不变,方向与速度方向关系恒相反,则在整个过程中克服摩擦力或介质阻力所做的功等于力与路程的乘积,从而可将物体在摩擦力或介质阻力作用下通过的路程与动能定理联系起来。
(2)应用动能定理求解多过程问题物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程根据动能定理列式求解,则可以使问题简化。根据题意灵活地选取研究过程,可以使问题变得简单。有时取全过程简单,有时取某一阶段简单。原则是尽量使做功的力减少,各个力的功计算方便,或使初、未动能等于零。
(3)用动能定理求变力的功变力的功无法用公式直接求解,有时该力也不是均匀变化的,无法用高中知识表达平均力,此时可以考虑用动能定理间接求解。涉及功、能的极值问题在涉及功、能的极值问题中,有些极值的形成是南运动形式的临界状态造成的。如竖直平面内圆周运动的最高点、平抛运动等。有些极值的形成是由题设条件造成的。在解决涉及功、能的极值问题时,一种思路是分析运动形式的临界状态,将临界条件转化为物理方程来求解;另一种思路是将运动过程的方程解析式化,利用数学方法求极值。


知识拓展:

 1.总功的计算物体受到多个外力作用时,计算合外力的功,一般有如下三种方法:
(1)先由力的合成与分解法或根据牛顿第二定律求出合力,然后由计算。采用此法计算合力的总功时,一是要求各力同时作用在物体上。二是要求合外力是恒力。
(2)由计算各个力对物体做的功,然后将各个外力所做的功求代数和。当多阶段运动过程中不同阶段物体所受外力不同,即外力分阶段作用在物体上时常用此法求外力的总功。
(3)外力做的总功等于物体动能的变化量,在物体初、末状态已知的情况下可考虑从动能变化量来确定合外力做的功。
2.系统动能定理
动能定理实质上是一个质点的功能关系,是针对单体或可看做单个物体的物体系而言的。所谓能看成单个物体的物体系,简单来说就是物体系内各物体之间的相对位置不变,从而物体系的各内力做功之和为零.物体系的动能变化就取决于所有外力做的总功了。
但是对于不能看成单个物体的物体系或不能看成质点的物体,可将其看成是由大量质点组成的质点系,对质点系组成的系统应用动能定理时,就不能仅考虑外力的作用,还需考虑内力所做的功。即:

如人在从地面上竖直跳起的过程中,只受到了重力、地面支持力两个力的作用,而人从下蹲状态到离开地面的过程中,支持力不对人做功,重力对人做负功,但人的动能增加了,原因就在于此过程中人不能被看成单一的质点,人体内肌肉、骨骼之间的内力对人也做功。再如光滑水平面上由静止释放两带异种电荷的小球,对两小球组成的系统来说,没有外力对它们做功,但它们的动能却增加了,原因也在于它们的内力对它们做了功。
3.动能、动能的变化与动能定理的比较:


发现相似题
与“如图所示,一水平圆盘绕过圆心的竖直轴转动,圆盘边缘有一质...”考查相似的试题有: