本试题 “质量为4kg的物体在t=0时刻受到恒定的合外力F作用在x-y平面上运动,物体沿x轴方向的位移图像和沿y轴方向的速度图像如图所示,下列说法正确的是[ ]A.t=0时刻质...” 主要考查您对运动的合成与分解
从运动情况确定受力
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
定义:
物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。
运动的合成与分解基本关系:
①分运动的独立性;
②运动的等效性(合运动和分运动是等效替代关系,不能并存);
③运动的等时性;
④运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则)。
互成角度的两个分运动的合运动的判断:
合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。
①两个直线运动的合运动仍然是匀速直线运动;
②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动;
③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动;
④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。
小船渡河问题:
小船渡河是典型的运动合成的问题。一条宽度为L的河流,水流速度为Vs,已知船在静水中的速度为Vc,那么:
①渡河时间最短:
如图甲所示,设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V1=Vcsinθ,渡河所需时间为:。
可以看出:L、Vc一定时,t随sinθ增大而减小;当θ=90°时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,。
②Vc>Vs,渡河路径最短:
如图乙所示,渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0。
所以θ=arccos,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。
③Vc<Vs,渡河路径最短:
如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?如图丙所示,设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角最大呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角最大,根据cosθ=,船头与河岸的夹角应为:θ=arccos。
船漂的最短距离为:。
此时渡河的最短位移为:。
从运动情况确定受力:
1、知道物体的运动情况,应用运动学公式求出物体的加速度,再应用牛顿第二定律,推断或者求出物体的受力情况。
2、分析这类问题的关键是抓住受力情况和运动情况的桥梁——加速度。
3、求解动力学这两类问题的思路,可由下面的框图来表示。
瞬时加速度问题的解决方法:
分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。此类问题应注意以下两种基本模型。
(1)刚性绳(或接触面):可认为是一种不发生明显形变就能产生弹力的物体。若剪断(或脱离)后,其弹力立即消失,不需要考虑形变恢复时间。一般题目中所给的细绳(线)和接触面,在不加特殊说明时,均可按此模型处理。解决此模型的关键在于分析情景突变后的过程,利用过程的初状态分析求解状态突变后的瞬时加速度。
(2)弹簧(或橡皮绳):此类物体的特点是形变量大,形变恢复需要较长时间。在瞬时问题中,其弹力的大小往往可以看成不变。但当弹簧的一端不与有质量的物体连接时,轻弹簧的形变不需要时间,弹力可以突变。解决此类问题时需利用情景突变前的受力来确定情景突变后瞬间的受力及加速度。
动力学范围的整体法与隔离法:
处理连接体问题的方法有整体法和隔离法。
1.整体法将一组连接体作为一个整体看待,牛顿第二定律中是整体受的合外力,只分析整体所受的外力即可(因为连接体的相互作用力是内力,可不分析),简化了受力分析。在研究连接体时,连接体各部分的运动状态可以相同,也可以不同。当连接体各部分运动状态不同时,整体的合外力等于各部分质量与各部分加速度乘积的矢量和,即F合写成分量形式有:
如果待求的问题不涉及系统内部的相互作用时,就可以采用整体法。
2.隔离法在求解连接体的相互作用力时采用,将某个部分从连接体中分离出来,其他部分对它的作用力就成了外力。
整体法与隔离法在研究连接体问题时经常交替使用。
与“质量为4kg的物体在t=0时刻受到恒定的合外力F作用在x-y平面上...”考查相似的试题有: