返回

高中物理

首页
  • 问答题
    如图所示,一对平行光滑轨道放置在水平面上,两轨道间距L=0.20m,电阻R=8Ω,有一电阻r=2Ω,质量m=1kg的金属棒ab垂直平放在轨道上,轨道电阻可忽略不计,整个装置处于垂直轨道平面向下的匀强磁场中,磁感应强度B=5T,现用一外力F沿轨道方向拉金属棒,使之做初速为零的匀加速直线运动,加速度a=1m/s2.试求:
    (1)2s内通过电阻R的电量Q大小;
    (2)外力F与时间t的关系;
    (3)求当t=5s时电阻R上的电功率PR和F的功率PF的大小,并用能量守恒的观点说明两者为何不相等?
    魔方格

    本题信息:2013年崇明县二模物理问答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “如图所示,一对平行光滑轨道放置在水平面上,两轨道间距L=0.20m,电阻R=8Ω,有一电阻r=2Ω,质量m=1kg的金属棒ab垂直平放在轨道上,轨道电阻可忽略不计,整个...” 主要考查您对

电功

电功率

闭合电路欧姆定律

导体切割磁感线时的感应电动势

电磁感应现象中的磁变类问题

电磁感应现象中的切割类问题

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 电功
  • 电功率
  • 闭合电路欧姆定律
  • 导体切割磁感线时的感应电动势
  • 电磁感应现象中的磁变类问题
  • 电磁感应现象中的切割类问题
电功:

1、定义:所谓电流做功,实质上是导体中的恒定电场对自由电荷的静电力在做功,简称电功。
2、公式: W=Ult
3、单位:焦(J),;千瓦时,
4、物理意义:电流所做的功,即电场力推动自由电荷定向移动 所做的功。
5、适用条件: 任何电路
6、能量转化情况:消耗多少电能就有多少电能转化为其他形式的能量。

电功率:

1、定义:单位时间内电流做的功叫电功率
2、公式:P=W/t=UI,这是计算电功率普遍适用的公式,只适用于纯电阻电路。
3、单位:瓦(W),
4、物理意义:电流做功的快慢
5、适用条件:任何电路
6、能量转化情况:单位时间内消耗电能的多少



电动机的三个功率及关系:



用电器额定功率和实际功率:

(1)用电器正常工作时所加的电压叫做额定电压,在额定电压下消耗的功率是额定功率,即。当用电器两端电压达到额定电压时,电流达到额定电流,电功率也达到额定功率,对于纯电阻用电器,
(2)实际功率是指用电器在实际电压下消耗的功率,即不一定等于。若,则,用电器可能被烧坏;若,则。实际功率不能长时间超过额定功率。


闭合电路欧姆定律:

1、内容:闭合电路的电流强度跟电源的电动势成正比,跟闭合电路总电阻成反比。
2、表达式:I=E/(R+r)。
3、适用范围:纯电阻电路。
4、电路的动态分析:
①分析的顺序:外电路部分电路变化→R变化→由判断I的变化→由U=E-Ir判断U的变化→由部分电路欧姆定律分析固定电阻的电流、电压的变化欧→用串、并联规律分析变化电阻的电流、电压电功。
②几个有用的结论
Ⅰ、外电路中任何一个电阻增大(或减少)时外电路的总电阻一定增大(或减少)。
Ⅱ、若开关的通断使串联的用电器增多时,总电阻增大;若开关的通断使并联的支路增多时,总电阻减少。
Ⅲ、动态电路的变化一般遵循“串反并同”的规律;当某一电阻阻值增大时,与该电阻串联的用电器的电压(或电流)减小,与该电阻并联的用电器的电压(或电流)增大。


电源的关系:



电阻的图像与闭合电路的图像:



导体切割磁感线产生的电动势:

 


电磁感应中电路问题的解法:

电磁感应规律与闭合电路欧姆定律相结合的问题,主要涉及电路的分析与计算。解此类问题的基本思路是:
(1)找电源:哪部分电路产生了电磁感应现象,则这部分电路就是电源。
(2)由法拉第电磁感应定律求出感应电动势的大小,根据楞次定律或右手定则确定出电源的正负极。
①在外电路,电流从正极流向负极;在内电路,电流从负极流向正极。
②存在双感应电动势的问题中,要求出总的电动势。
(3)正确分析电路的结构,画出等效电路图。
①内电路:“切割”磁感线的导体和磁通量发生变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻。
②外电路:除“电源”以外的电路即外电路。
(4)运用闭合电路欧姆定律、串并联电路特点、电功率等列方程求解。


电磁感应现象中的磁变类问题:

电磁感应现象中的磁变类问题:磁场变化时会在空间激发一种电场,这种电场与静电场不同,不是由电荷产生的,叫做感生电场,由感生电场产生的电动势叫做感生电动势。
1、电磁感应中的电路问题
在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流。因此,电磁感应问题往往与电路问题联系在一起。解决与电路相联系的电磁感应问题的基本方法是:
①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
②画等效电路;
③运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解。
2、电磁感应现象中的力学问题
(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:
①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;
②求回路中电流强度;
③分析研究导体受力情况(包含安培力,用左手定则确定其方向);
④列动力学方程或平衡方程求解。
(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。
3、电磁感应中能量转化问题
导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:
①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
②画出等效电路,求出回路中电阻消耗电功率表达式;
③分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。
4、电磁感应中图像问题
电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。
另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。
电磁感应现象中的切割类问题:如果感应电动势是由导体运动而产生的,叫做动生电动势。
1、电磁感应中的电路问题
在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流。因此,电磁感应问题往往与电路问题联系在一起。解决与电路相联系的电磁感应问题的基本方法是:
①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
②画等效电路;
③运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解。
2、电磁感应现象中的力学问题
(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:
①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;
②求回路中电流强度;
③分析研究导体受力情况(包含安培力,用左手定则确定其方向);
④列动力学方程或平衡方程求解。
(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。
3、电磁感应中能量转化问题
导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:
①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
②画出等效电路,求出回路中电阻消耗电功率表达式;
③分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。
4、电磁感应中图像问题
电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。
另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。
发现相似题
与“如图所示,一对平行光滑轨道放置在水平面上,两轨道间距L=0.2...”考查相似的试题有: