本试题 “如图甲所示,理想变压器原、副线圈的匝数比为10:1,R1=20 Ω,R2=30 Ω,L为无直流电阻的电感线圈,已知通过R1的正弦交变电流如图乙所示,则[ ]A.原线圈输入...” 主要考查您对自感现象
交变电流的图像
变压器电压、电流、电功率与匝数的关系
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
通电自感和断电自感:
分析自感现象的基本方法:
因为自感现象是以发生自感的那部分电路的电流为主展开的分析,所以在研究自感问题时,应以电流的稳定分布为分析的基点,对电流的变化进行比较后展开分析。一般我们只研究电流从零增大到稳定值和由稳定值减小到零的情况。
1.自感电路中阻碍自感电流变化的原因
(1)当自感电路中电流增大时,增大的电流的能量转化为自感线圈中的磁场能量,而表现出阻碍这种增大的现象。
(2)当自感电路中电流减小时,自感线圈储存的磁场能量会释放出来,转化为电流的能量,而表现出阻碍这种减小的现象。
2.分析自感支路对其他并联支路的影响的步骤
(1)当电源接通,自感电路中电流由零开始增大的瞬时,相当于此电路中电阻突然增大到极大,等效于该支路在瞬时断开。
(2)当电源断开,自感电路中电流减小到零瞬时,此电路的电流会在一段短暂时间内维持原来大小。
(3)通过各支路的电路结构比较它们在稳定状态的电流大小。
(4)把自感线圈当做假想电源,其他支路与新电源的关系确定电路结构,确定电流的分配,再比较各支路新的电流与原来电流的大小关系,分析要处理的问题并得出结论:
3.自感中“闪亮”与“不闪亮”问题
速解自感问题的等效法:
1.通电自感的等效
在通电前线圈中电流为零。通电后线圈中的电流逐渐增大到稳定值。此过程中可将线圈等效为导体,其阻值由无穷大逐渐减小到其直流阻值。然后利用直流动态电路分析中“串反并同”的结论分析通电自感中发生的现象。
2.断电自感的等效
开关断开后,若通电自感线圈中的电流仍能形成通路,则流过自感线圈中的电流将从原来的数值沿原来的方向流动,流动中电流逐渐减小到零。断电的线圈可等效为一个电源,其电动势大小与其外电路有关,与通电线圈中电流有关。E=I(r+R)。当线圈中电流逐渐减小到零时,E逐渐减小到零。
图像问题的解决方法:
描述矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动所产生的正弦交变电流,一般有两种方法。
1.公式法
若匀速转动的线圈从中性面开始计时,线圈中瞬时感应电动势的变化规律为,此时,电路中的电流瞬时值的表达式为
2.图像法
以式中的t为自变量所画函数图像如图所示,图像能直观、方便地表示出交变电流的电动势e(或i)随时间的变化情况。
解决图像问题的基本方法是:“一看”、“二变”、 “三判断”。即:
一看:看“轴”、看“线”、看“斜率”、看“点”。
二变:掌握“图与图”、“图与式”和“图与物”之间的变通能力。
三判断:结合图像和公式进行正确的分析和判断。
变压器电压,电流,电功率与匝数的关系:
1、理想变压器中的几个关系
①电压关系
在同一铁芯上只有一组副线圈时:;有几组副线圈时:
②功率关系
对于理想变压器不考虑能量损失,总有P入=P出
③电流关系
由功率关系,当只有一组副线圈时,I1U1=I2U2,得;当有多组副线圈时:I1U1=I2U2+I3U3+……,得I1n1=I2n2+I3n3+……
2、变压器的题型分析
①在同一铁芯上磁通量的变化率处处相同;
②电阻和原线圈串联时,电阻与原线圈上的电压分配遵循串联电路的分压原理;
③理想变压器的输入功率等于输出功率。
3、解决变压器问题的常用方法
①思路1:电压思路。变压器原、副线圈的电压之比为U1/U2=n1/n2;当变压器有多个副绕组时U1/n1=U2/n2=U3/n3=……
②思路2:功率思路。理想变压器的输入、输出功率为P入=P出,即P1=P2;当变压器有多个副绕组时P1=P2+P3+……
③思路3:电流思路。由I=P/U知,对只有一个副绕组的变压器有I1/I2=n2/n1;当变压器有多个副绕组时n1I1=n2I2+n3I3+……
④思路4:(变压器动态问题)制约思路。
Ⅰ、电压制约:当变压器原、副线圈的匝数比(n1/n2)一定时,输出电压U2由输入电压决定,即U2=n2U1/n1,可简述为“原制约副”;
Ⅱ、电流制约:当变压器原、副线圈的匝数比(n1/n2)一定,且输入电压U1确定时,原线圈中的电流I1由副线圈中的输出电流I2决定,即I1=n2I2/n1,可简述为“副制约原”;
Ⅲ、负载制约:⑴变压器副线圈中的功率P2由用户负载决定,P2=P负1+P负2+…;⑵变压器副线圈中的电流I2由用户负载及电压U2确定,I2=P2/U2;⑶总功率P总=P线+P2;
动态分析问题的思路程序可表示为:
⑤思路5:原理思路。变压器原线圈中磁通量发生变化,铁芯中ΔΦ/Δt相等;当遇到“”型变压器时有ΔΦ1/Δt=ΔΦ2/Δt+ΔΦ3/Δt,此式适用于交流电或电压(电流)变化的直流电,但不适用于稳压或恒定电流的情况。
利用制约关系处理变压器的动态问题:
所谓变压器的动态问题,指的就是电路中某一部分或某一物理量的变化,引起电路其他部分或其他物理量的变化情况。理想变压器的动态问题大致有两种情况:一是负载电阻不变,原、副线圈的电压,电流,输入和输出功率随匝数比的变化而变化的情况;二是匝数比不变,电流和功率随负载电阻的变化而变化的情况。不论哪种情况,处理这类问题的关键在于分清变量和不变量,弄清楚“谁决定谁”的制约关系。
理想变压器的制约关系如下(一原一副情况):
(1)电压制约
当变压器原、副线圈的匝数比一定时,输出电压由输入电压决定,即,可简述为“电压原制约电压副”。
(2)电流制约
当变压器原、副线圈的匝数比一定,且输入电压确定时,原线圈中的电流由副线圈中的输出电流决定,即,可简述为“电流副制约电流原”。
(3)功率制约
输出功率P2决定输入功率P1。理想变压器的输入功率P1等于输出功率P2。在输入电压U1、输出电压U2一定的条件下,当负载电阻R减小时,增大,输出功率增大,则输入功率也随之增大;反之,当负载电阻R增大时,减小,输出功率减小,则输入功率也随之减小。通俗地说就是“用多少,给多少,而不是给多少,用多少”。
理想变压器中相关物理量间的制约关系的分析程序可表示为:
涉及多组副线圈问题的解法:
多组副线圈的理想变压器问题与只有一个副线圈的问题思路基本相同,但在多个副线圈同时工作时不再适用。所以抓住两个关系:
(1)电压关系:
(2)功率关系:即
理想变压器:
与“如图甲所示,理想变压器原、副线圈的匝数比为10:1,R1=20 Ω...”考查相似的试题有: