返回

高中二年级数学

首页
  • 解答题
    在数列{an}和{bn}中,a1=1,b1=2,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*),
    (1)求a2,a3,a4和b2,b3,b4
    (2)猜想{an},{bn}的通项公式,并证明你的结论;
    (3)求证:(n∈N*)。
    本题信息:2010年北京期末题数学解答题难度较难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “在数列{an}和{bn}中,a1=1,b1=2,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*),(1)求a2,a3,a4和b2,b3,b4;(2)猜想{an},{bn}的通...” 主要考查您对

等差中项

等比中项

数学归纳法证明不等式

数学归纳法

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等差中项
  • 等比中项
  • 数学归纳法证明不等式
  • 数学归纳法

等差中项:

若a,A,b成等差数列,那么A叫做a与b的等差中项,且2A=a+b,即,反之,若,则a,A,b成等差数列。


等差数列中相邻三项之间存在如下关系:

(1) 反之,若数列中相邻三项之间存在如下关系:则该数列是等差数列,
(2) 若a,A,b成等差数列,那么 2A=a+b,A-a =b -A,a-A =A -b都是等价的.


等比中项:

若数a,G,b成等比数列,那么就称G为a与b的等比中项,从而有G2=ab或G=±


等比中项的理解:

如果a,G,b三个数成等比数列,则有G2=ab.反之不一定成立.由等比中项定义可知:
这表明,只有同号的两项才有等比中项,并且这两项有2个互为相反数的等比中项,当a>0,b>0时,G又叫做a,b的几何平均数。


归纳法的定义:

由有限多个个别的特殊事例得出一般结论的推理方法,称为归纳法。


数学归纳法证明不等式的步骤:

(1)证明当n取初始值n0(例如n0=0,n0=1等)时不等式成立;
(2)假设当n=k(k为自然数,k≥n0)时不等式成立,证明当n=k+1时不等式也成立。

对数学归纳法的理解:

(1)数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确。
(2)运用数学归纳法证明与正整数有关的数学命题,两个步骤缺一不可.理解数学归纳法中的递推思想,尤其要注意其中第二步,证明n=k+1命题成立时必须要用到n=k时命题成立这个条件.这种理解不仅使我们能够正确认识数学归纳法的原理与本质,也为证明过程中第二步的设计指明了思维方向.


归纳法:

对于某类事物,由它的一些特殊事例或其全部可能情况,归纳出一般结论的推理方法叫做归纳法。归纳法包括完全归纳法和不完全归纳法。

数学归纳法:

一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
(1)证明当n取第一个值n0(n0∈N*)时命题成立;
(2)假设当n=k(k∈N*,k≥n0)时命题成立,证明当n=k+1时命题也成立;
完成这两步,就可以断定这个命题对从n0开始的所有正整数n都成立,这种证明方法叫做数学归纳法。


数学归纳法的特点:

①用数学归纳法进行证明时,要分两个步骤,两步同样重要,两步骤缺一不可;
②第二步证明,由假设n=k时命题成立,到n=k+1时.必须用假设条件,否则不是数学归纳法;
③最后一定要写“由(1)(2)……”。

数学归纳法的应用:

(1)证明恒等式;
(2)证明不等式;
(3)三角函数;
(4)计算、猜想、证明。