返回

高中二年级物理

首页
  • 单选题
    下列四幅图涉及到不同的物理知识,其中说法错误的是(   )


    A.图甲:普朗克通过研究黑体辐射提出能量子的概念,成为量子力学的奠基人之一
    B.图乙:玻尔理论指出氢原子能级是分立的,所以原子发射光子的频率也是不连续的
    C.图丙:卢瑟福通过分析α粒子散射实验结果,发现了质子和中子
    D.图丁:根据电子束通过铝箔后的衍射图样,可以说明电子具有波动性
    本题信息:2011年0113月考题物理单选题难度一般 来源:马凤霞
  • 本题答案
    查看答案
本试题 “下列四幅图涉及到不同的物理知识,其中说法错误的是( )A.图甲:普朗克通过研究黑体辐射提出能量子的概念,成为量子力学的奠基人之一B.图乙:玻尔理论指出...” 主要考查您对

能量量子化

电子的发现

原子的核式结构模型:α粒子散射实验

玻尔的原子理论

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 能量量子化
  • 电子的发现
  • 原子的核式结构模型:α粒子散射实验
  • 玻尔的原子理论
能量量子化:

1、黑体辐射:固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。
2、黑体能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。
3、黑体辐射实验:黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
4、能量子:1900年,德国物理学家普朗克提出能量量子化假说:辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε,1ε,2ε,3ε,... nε,n为正整数,称为量子数。
对于频率为υ的谐振子最小能量为ε=hυ,这个最小能量值,就叫做能量子。

电子的发现:

阴极射线 产生 在研究气体导电的玻璃管内有阴、阳两极。当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线
特点 轰击荧光物质时能使其发光
组成 电子流
电子 质量
电荷量
比荷
发现 1897年,英国物理学家汤姆孙测出了阴极射线粒子的比荷,断定它是带负电的粒子,后来被称为电子
意义 电子是人类发现的第一个比原子小的粒子。电子的发现,打破了原子不可再分的传统观念,使人们认识到原子不是组成物质的最小微粒,原子本身也有内部结构。从此,原子物理学飞速发展,人们对物质结构的认识进入了一个新时代
密立根实验
电子电荷的精确测定是在1909—1913年间由美国科学家密立根通过著名的“油滴实验”测出的
密立根实验更重要的发现是:电荷是量子化的,即任何带电体所带电荷量只能是e的整数倍

α粒子散射实验:

是用α粒子轰击金箔,结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。这说明原子的正电荷和质量一定集中在一个很小的核上。

汤姆孙的原子结构模型:

模型理论 原子是一个球体,正电荷均匀分布在整个球内,而电子像枣糕里的枣儿那样镶嵌在原子里,电子的总电荷量和正电荷的电荷量相等
模型比例
模型的应用

原子呈现电中性的原因是原子内正电荷与电子的总电荷数值相等;原子能够发光的原因是电子在原子内振动;不同原子发光频率不同的原因是不同原子内电子的振动频率不同等

模型的否定 不能解释α粒子散射现象被否定

玻尔的原子理论:

经典理论的困难 原子的稳定性 电子做加速运动应该辐射电磁波,逐渐减小能量和轨道半径,最终落入原子核,原子是不稳定的,与事实不符
原子光谱的分立性 电子绕核运行辐射频率应等于电子绕核运行频率,由于运行轨道的减小,辐射电磁波频率应不断变化而形成连续光谱,这与原子光谱一明线光谱不符(固定的若干种频率)
玻尔理论基础 实验基础 氢原子光谱的分立特征
理论基础 普朗克关于黑体辐射的量子论与爱因斯坦的光子说
波尔理论内容 量子化假设 ①电子的轨道是量子化的。电子运行轨道的半径不是任意的,只有半径的大小符合一定条件的轨道才是可能的。电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射
②原子的能量是量子化的。这些量子化的能量值叫做能级。原子中这些具有确定能量的稳定状态称为定态。能量最低的状态叫做基态,其他的状态叫做激发态
频率条件 当电子从能量较高的定态轨道(Em)跃迁到能量较低的定态轨道(En)时,会放出能量为hv的光子,这个光子的能量由前后两个能级的能量差决定,即hv=Em一En
对光谱的解释 原子光谱的分立性 通常情况下,原子处于基态,基态是稳定的,处于激发态的原子是不稳定的。原子从高能态向低能态跃迁时放出的光子的能量等于前后两个能级之差。由于原子的能级是分立的,所以放出的光子的能量也是分立的。因此原子的发射光谱只有一些分立的亮线
特征谱线 由于不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不同,这就是不同元素的原子具有不同的特征谱线的原因
氢原子光谱线系 玻尔理论不但成功地解释了氢光谱的巴耳末系,而且对当时已发现的氢光谱的另一线系——帕邢系(在近红外区)也能很好地解释。它是电子从n=4、5、6等能级向n=3 能级跃迁时辐射出来的。此外,玻尔理论还预言了当时尚未发现的氢原子的其他光谱线系,这些线系后来相继被发现,也都跟玻尔理论的预言相符

玻尔的原子理论的成功与局限:

玻尔的原子理论第一次将量子观引入原子领域,提出定态和跃迁的概念,成功地解释了氢原子光谱规律,但玻尔引入的量子化观点并不完善。在量子力学中,核外电子并没有确定的轨道,玻尔的电子轨道只不过是电子出现概率较大的地方。把电子的概率分布用图像表示时,用小黑点的稠密程度代表概率的大小,其结果如同电子在原子核周围形成的云雾,称为“电子云


发现相似题
与“下列四幅图涉及到不同的物理知识,其中说法错误的是( )A....”考查相似的试题有: