返回

高中物理

首页
  • 多选题
    如图所示,有一木块A以某一速度v0自左端冲上静止的皮带运输机传送带上,然后以一较小的速度V自右端滑离传送带,若传送带在皮带轮带动下运动时,A仍以速度v0冲上传送带,设传送带速度小于A的初速度v0,但大于V则(  )
    A.若皮带轮逆时针方向转动,A仍以速度V离开传送带的右端
    B.若皮带轮逆时针方向转动,A可能到达不了传送带的右端
    C.若皮带轮顺时针方向转动,A离开传送带时速度可能仍为V
    D.若皮带轮顺时针方向转动,A离开传送带时速度大于V
    魔方格

    本题信息:物理多选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “如图所示,有一木块A以某一速度v0自左端冲上静止的皮带运输机传送带上,然后以一较小的速度V自右端滑离传送带,若传送带在皮带轮带动下运动时,A仍以速度v0冲...” 主要考查您对

匀变速直线运动规律的应用

滑动摩擦力、动摩擦因数

牛顿第二定律

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 匀变速直线运动规律的应用
  • 滑动摩擦力、动摩擦因数
  • 牛顿第二定律

基本公式:

①速度公式:vt=v0+at;
②位移公式:s=v0t+at2
③速度位移公式:vt2-v02=2as。

推导公式:
①平均速度公式:V=
②某段时间的中间时刻的瞬时速度等于该段时间内的平均速度:
③某段位移的中间位置的瞬时速度公式:。无论匀加速还是匀减速,都有
④匀变速直线运动中,在任意两个连续相等的时间T内的位移差值是恒量,即ΔS=Sn+l–Sn=aT2=恒量。
⑤初速为零的匀变速直线运动中的比例关系(设T为相等的时间间隔,s为相等的位移间隔):
Ⅰ、T末、2T末、3T末……的瞬时速度之比为:v1:v2:v3:……:vn=1:2:3:……:n;
Ⅱ、T内、2T内、3T内……的位移之比为:s1:s2:s3:……:sn=1:4:9:……:n2
Ⅲ、第一个T内、第二个T内、第三个T内……的位移之比为:s:s:s:……:sN=1:3:5:……:(2N-1);
Ⅳ、前一个s、前两个s、前三个s……所用的时间之比为:t1:t2:t3:……:tn=1:……:
Ⅴ、第一个s、第二个s、第三个s……所用的时间之比为t、t、t:……:tN=1:……:


追及相遇问题:

①当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距会越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题。
②追及问题的两类情况:
Ⅰ、速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):

Ⅱ、速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动):

③相遇问题的常见情况:
Ⅰ、同向运动的两物体追及即相遇;
Ⅱ、相向运动的物体,当各自发生的位移大小和等于开始时两物体的距离时即相遇。


知识点拨:

例:如图所示,光滑斜面AE被分为四个长度相等的部分,即AB=BC=CD=DE,一物体由A点静止释放,下列结论不正确的是(    )

A.  物体到达各点的速率之比=

B.  物体到达各点所经历的时间

C.  物体从A运动到E的全过程的平均速度

D.  物体通过每一部分时,其速度增量

解析:由,即A正确。由,则,由此可知B正确。由,即B点为AE段的时间中点,故,即C正确。对于匀变速直线运动,若时间相等,速度增量相等,故D错误,只有D符合题意。

答案:D

 


滑动摩擦力的概念:

当一个物体在另一个物体的表面上相对运动时,受到的阻碍相对运动的力,叫滑动摩擦力。


滑动摩擦力产生条件:

①接触面粗糙;
②相互接触的物体间有弹力;
③接触面间有相对运动。
说明:三个条件缺一不可,特别要注意“相对”的理解。


滑动摩擦力的方向:

总跟接触面相切,并与相对运动方向相反。 “与相对运动方向相反”不能等同于“与运动方向相反”。滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。

滑动摩擦力的大小:

滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。公式:F=μFN (F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。
①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定;
②μ与接触面的材料、接触面的情况有关,无单位,而且永远小于1;
③滑动摩擦力大小,与相对运动的速度大小无关。 

滑动摩擦力的作用效果:

总是阻碍物体间的相对运动,但并不总是阻碍物体的运动,可能是动力,也可能是阻力。

静摩擦力和滑动摩擦力:




摩擦力大小的计算方法:


内容:

物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s2加速度的力,叫做1N(kg·m/s2=N)。

对牛顿第二定律的理解:

①模型性
牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。
②因果性
力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。
③矢量性
合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。
④瞬时性
加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
⑤同一性(同体性)
中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
⑥相对性
中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。
⑦独立性
F产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:
⑧局限性(适用范围)
牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。
牛顿第二定律的应用:

1.应用牛顿第二定律解题的步骤:
(1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=
对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。
(2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。
(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
(4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
2.两种分析动力学问题的方法:
(1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。
(2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。
①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:(沿加速度方向),(垂直于加速度方向)。
②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。
3.应用牛顿第二定律解决的两类问题:
(1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下:

(2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:

可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。
知识扩展:

1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。
2.关于a、△v、v与F的关系
(1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。
(2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。
(3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。
发现相似题
与“如图所示,有一木块A以某一速度v0自左端冲上静止的皮带运输机...”考查相似的试题有: