返回

高中一年级数学

首页
  • 解答题
    已知=(1-cosx,2sin),=(1+cosx,2cos),
    (1)若f(x)=2+sinx-|-|2,求f(x)的表达式;
    (2)若函数f (x)和函数g(x)的图象关于原点对称,求函数g(x)的解析式;
    (3)若h(x)=g(x)-f(x)+1在[-]上是增函数,求实数的取值范围。
    本题信息:2009年河北省期中题数学解答题难度较难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “已知=(1-cosx,2sin),=(1+cosx,2cos),(1)若f(x)=2+sinx-|-|2,求f(x)的表达式;(2)若函数f (x)和函数g(x)的图象关于原点对称,求函数g(x)的解...” 主要考查您对

函数的奇偶性、周期性

二次函数的性质及应用

向量的加、减法运算及几何意义

向量模的计算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的奇偶性、周期性
  • 二次函数的性质及应用
  • 向量的加、减法运算及几何意义
  • 向量模的计算

函数的奇偶性定义:

偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。
奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。 
 
函数的周期性

(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的。
(2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。
周期函数并非都有最小正周期,如常函数f(x)=C。


奇函数与偶函数性质:

(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。

注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.


1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

2、函数的周期性    令a , b 均不为零,若: 
(1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a| 
(2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a| 
(3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a| 
(4)函数y = f(x) 存在 f(x + a) =  ==> 函数最小正周期 T=|2a| 
(5)函数y = f(x) 存在 f(x + a) =   ==> 函数最小正周期 T=|4a|


二次函数的定义:

一般地,如果(a,b,c是常数,a≠0),那么y叫做x的二次函数。

二次函数的图像

是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向,a表示开口方向;a>0时,抛物线开口向上;a<0时,抛物线开口向下;
②有对称轴
③有顶点
④c表示抛物线与y轴的交点坐标:(0,c)。

性质:二次函数y=ax2+bx+c,

①当a>0时,函数f(x)的图象开口向上,在(-∞,-)上是减函数,在[-,+∞)上是增函数;
②当a<0时,函数f(x)的图象开口向下,在(-∞,-)上是增函数,在[-,+∞)是减函数。


二次函数(a,b,c是常数,a≠0)的图像:

图像 函数的性质
a>0 定义域 x∈R(个别题目有限制的,由解析式确定)
 
值域 a>0 a<0
 
奇偶性 b=0时为偶函数,b≠0时为非奇非偶函数
a<0 单调性 a>0 a<0
图像特点

二次函数的解析式:

(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式为 ;
(3)双根式:若相应一元二次方程的两个根为 ,则其解析式为


二次函数在闭区间上的最值的求法:

(1)二次函数 在区间[p,g]上的最值问题
一般情况下,需要分三种情况讨论解决.
当a>0时,f(x)在区间[p,g]上的最大值为M,最小值为m,令 .
 



特别提醒:在区间内同时讨论最大值和最小值需要分四种情况讨论.

(2)二次函数在区间[m.n]上的最值问题一般地,有以下结论:
 
特别提醒:max{1,2}=2,即取集合{1,2}中最大的元素。

二次函数的应用

(1)应用二次函数才解决实际问题的一般思路:
理解题意;建立数学模型;解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。


向量加法的定义:

已知非零向量ab,在平面内任取一点A,作,再做向量,则向量叫做的和,即
作向量的加法有“三角形法则”和“平行四边形法则”,其中“平行四边形法则”只适用于不共线的向量。

向量加法的三角形法则:

已知非零向量a,b,在平面内任意取一点A,作a,

这种求向量和的方法称为向量加法的三角形法则,如图
 
 
向量加法的平行四边形法则:
 
以同一点O起点的两个已知向量a,b为邻边作平行四边形OACB,则以O为起点的对角线OC就是ab的和,这种作两个向量和的方法叫做向量加法的平行四边形法则,如图.
  

向量减法的定义:

向量与向量的相反向量的和,叫做向量与向量的差,记作:
作向量减法有“三角形法则”:设,那么,由减向量和终点指向被减向量和终点。
注意:此处减向量与被减向量的起点相同。

向量减法的作图法:

 
 
  
 因此,a-b可以表示为从向量b的终点指向向量a的终点的向量,这就是向量减法的几何意义.

坐标运算:

已知,则


向量加减法的运算律:

(1)交换律:
(2)结合律:


求向量的和的三角形法则的理解:

使用三角形法则特别要注意“首尾相接”,具体做法是把用小写字母表示的向量,用两个大写字母表示(其中后面向量的起点与其前一个向量的终点重合,即用同一个字母表示),则由第一个向量的起点指向最后一个向量终点的有向线段就表示这些向量的和。对于n个向量,仍有 这可以称为向量加法的多边形法则。

作两个向量的和向量,可分四步:

①取点,注意取点的任意性;
②作相等向量,分别作与两个已知向量相等的向量,使它们的起点重合;
③作平行四边形,以两个向量为邻边作平行四边形;
④作和向量,与两个向量有共同起点的对角线作为和向量,共同的起点作为和向量的起点,对角线的另一个端点作为和向量的终点.当两个向量不共线时,三角形法则和平行四边形法则是一致的;当两个向量共线时,三角形法则同样适用,而平行四边形法则就不适用了.

向量的加法需要说明的几点:

①当两个非零向量ab不共线时,a+b的方向与a,b的方向都不相同,且
②当两个非零向量ab共线时,
a.向量ab同向(如下图),即向量a+ba(b)方向相同,且
 
b.向量ab反向(如上图)且|a|<|b|时,即a+bb方向相同(与a方向相反),且

综上可知

向量减法的理解:

①定义向量减法是借助了相反向量和向量加法,其实,向量减法的实质是向量加法的逆运算.两个向量的差仍是向量;
②作差向量时,作法一较为复杂,作法二较为简捷,应根据问题的需要灵活运用;
③以为邻边作平行四边形ABCD,则两条对角线表示的向量为这一结论在以后的应用是非常广泛的,应该加强理解并记住;
④对于任意一点O,简记为“中减起”,在解题中经常用到,必须记住.


向量的模

,则有向线段的长度叫做向量的长度或模,记作:,则 

 向量模的坐标表示:

(1)若,则
(2)若,那么


求向量的模:

求向量的模主要是利用公式来解。