本试题 “在水平光滑的绝缘桌面内建立如图所示的直角坐标系,将第Ⅰ、Ⅱ象限称为区域一,第Ⅲ、Ⅳ象限称为区域二,其中一个区域内只有匀强电场,另一个区域内只有大小为2×1...” 主要考查您对带电粒子在电场中运动的综合应用
带电粒子在匀强磁场中的运动
带电粒子在复合场中的运动
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
电场中无约束情况下的匀速圆周运动:
1.物体做匀速圆周运动的条件从力与运动的关系来看,物体要做匀速圆周运动,所受合外力必须始终垂直于物体运动的方向,而且大小要恒等于物体所需的向心力。冈此,物体做匀速圆周运动时必须受到变力的作用,或者不受恒力的作用,或者恒力能被平衡。
2.在静电力作用下的匀速圆周运动在不考虑带电粒子的重力作用时,带电粒子有两种情况可以做匀速圆周运动。
(1)在带有异种电荷的同定点电荷周围。
(2)在等量同种点电荷的中垂面上,运动电荷与场源电荷异性。在这种情境中,还要求运动电荷所具有的初速度要与所受到的电场力垂直,且满足合外力等于所需向心力的条件。否则运动电荷可能做直线运动、椭圆运动等。
3.有重力参与的匀速圆周运动重力是一恒力,带电粒子要做匀速圆周运动,重力必须被平衡,一种方式是利用水平支撑面的弹力,一种方式是利用变化的电场力的某一分力。
带电粒子所受重力的处理方法:
是否考虑重力要依据具体情况而定:
(1)微观粒子:如电子、质子、α粒子、离子等,除有说明或明确的暗示外,一般不考虑重力(但不能忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。
(3)有些情况下是否考虑粒子的重力需要用假设法从粒子的运动上来分析,若考虑粒子的重力,粒子的运动与题目给定的运动状态不符合,则不需考虑重力;若不考虑粒子所受到的重力,粒子不能完成题目给定的运动过程就必须考虑重力。
(4)在给定具体数据的情况下还可以通过定量计算来选择是否考虑重力的作用,一般说来重力与电场力相差两个甚至两个以上的数量级,粒子的重力就可以忽略。
匀强电场与重力场的复合场问题的处理方法:
1.动力学观点的两种方法
(1)正交分解法:处理这种运动的基本思想与处理偏转运动是类似的,可以将此复杂的运动分解为两个互相正交的比较简单的直线运动,然后再按运动合成的观点去求出复杂运动的有关物理量。
(2)等效“重力”法:将重力与电场力进行合成,如图所示,则等效于“重力”,等效于“重力加速度”
的方向,等效于“重力”的方向,即在重力场中竖直向下的方向。
2.功能观点的解决方法
(1)从功能观点出发分析带电粒子的运动问题时,在对带电粒子受力情况和运动情况进行分析的基础上,再考虑应用恰当的规律解题。如果选用动能定理,要分清有几个力做功,做正功还是负功,是恒力做功还是变力做功,以及初、未状态的动能。
(2)如果选用能垃守恒定律解题,要分清有多少种形式的能参与转化,哪种形式的能增加,哪种形式的能减少,并注意电场力做功与路径无关。
带电粒子在交变电场中运动问题的解决方法:
带电粒子在极板问加速或偏转时,若板间所加电压为一交变电压,则粒子在板间的运动可分两种情况处理:一是粒子在板间运动时间t远小于交变电压的周期T;二是粒子在板间运动时间t与交变电压变化周期 T相差不大甚至t>T。
第一种情况下需采用近似方法处理,可认为在粒子运动的整个过程的短暂时问内,板间电压恒等于粒子入射时的电压,即在粒子运动过程中,板间电压按恒压处理,且等于粒子入射时的瞬时电压。
第二种情况下粒子的运动过程较为复杂,可借助于粒子运动的速度图像。物理图像是表达物理过程、规律的基本工具之一,用图像反映物理过程、规律,具有直观、形象的特点,带电粒子在交变电场中运动时,受电场力作用,其加速度、速度等均做周期性变化,借助图像来描述它在电场中的运动情况,可直观展示物理过程,从而获得启迪,快捷地分析求解。在有交变电场作用下带电粒子运动的问题中,有一类重要问题是判定带电粒子能从极板间穿出的条件或侧移量、偏转角范围等问题。而解决此类问题的关键是找出粒子恰好能从板间飞出的临界状态:恰好从极板边缘飞出,并将其转换为临界状态方程。
带电粒子在接地极板间运动问题的解决方法:
当粒子在平行金属板间运动时,若一个极板接地,会对粒子的运动造成什么影响呢?这需分两种情况来考虑:
(1)粒子运动过程巾与极板之间无接触,极板接地只是确定极板电势的高低,这种情况下极板接地与否对粒子的运动不产生影响。
(2)一个极板接地,当运动电荷与另一极板接触而使电荷量变化,则接地的极板也就会与大地之问发生电荷的转移,从而确保两极板所带电荷量相等,但电荷量变化时,极间电场也随之发生变化。
带电粒子在匀强磁场中的运动形式:
电偏转与磁偏转的对比:
关于角度的两个结论:
(1)粒子速度的偏向角φ等于圆心角α,并等于AB弦与切线的弦切角θ的2倍(如图所示),即。
(2)相对的弦切角θ相等,与相邻的弦切角θ'互补,即
有界磁场中的对称及临界问题:
(1)直线边界
粒子进出磁场时的速度关于磁场边界对称.如图所示。
(2)圆形边界
①沿半径方向射入磁场,必沿半径方向射出磁场。
②射入磁场的速度方向与所在半径间夹角等于射出磁场的速度方向与所在半径间的夹角。
(3)平行边界
存在着临界条件:
(4)相交直边界
确定轨迹圆心位置的方法:
带电粒子在磁场中做圆周运动时间和转过圆心角的求解方法:
带电粒子在有界磁场中的临界与极值问题的解法:
当某种物理现象变化为另一种物理现象,或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折态通常称为临界状态,涉及临界状态的物理问题叫做临界问题,产生临界状态的条件叫做临界条件,临界问题能有效地考查学生多方面的能力,在高考题中屡见不鲜。认真分析系统所经历的物理过程,找出与临界状态相对应的临界条件,是解答这类题目的关键,寻找临界条件,方法之一是从最大静摩擦力、极限频率、临界角、临界温度等具有临界含义的物理量及相关规律人手:方法之二是以题目叙述中的一些特殊词语如“恰好”、“刚好”、“最大”、“最高”、“至少”为突破口,挖掘隐含条件,探求临界位置或状态。如:
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。据此可以确定速度、磁感应强度、轨迹半径、磁场区域面积等方面的极值。
(2)当速度v一定时,弧长(或弦长)越大,圆周角越大,则带电粒子在有界磁场巾运动的时间越长。(前提条件是弧是劣弧)
(3)当速率v变化时,圆周角大的,运动时间越越长。
“动态圆”问题的解法:
1.入射粒子不同具体地说当入射粒子的比荷不同时,粒子以相同的速度或以相同的动能沿相同的方向射人匀强磁场时,粒子在磁场中运动的周期必不相同;运动的轨迹半径,在以不同的速度入射时不相同,以相同动能入射时可能不同。
2.入射方向不同相同的粒子以相同的速率沿不同方向射人匀强磁场中,粒子在磁场中运动的轨道中,运动周期是相同的,但粒子运动径迹所在空间位置不同,所有粒子经过的空间区域在以入射点为圆心,运动轨迹圆的直径为半径的球形空间内。当磁场空间有界时,粒子在有界磁场内运动的时间不同,所能到达的最远位置不同,从而形成不同的临界状态或极值问题,此类问题中有两点要特别注意:一是旋转方向对运动的影响,二是运动中离入射点的最远距离不超过2R,因R是相同的,进而据此可利用来判定转过的圆心角度、运动时间等极值问题,其中l是最远点到入射点间距离即轨迹上的弦长。
3.入射速率不同
相同的粒子从同一点沿同一方向以不同的速率进入匀强磁场中,虽然不同速率的粒子运动半径不同,但圆心却在同一直线上,各轨迹圆都相切于入射点。在有界磁场中会形成相切、过定点等临界状态,运动时间、空间能到达的范围等极值问题。当粒子穿过通过入射点的直线边界时,粒子的速度方向相同,偏向角相同,运动时间也相同。
4.入射位置不同
相同的粒子以相同的速度从不同的位置射入同一匀强磁场中,粒子在磁场中运动的周期、半径都相同,但在有界磁场中,对应于同一边界上的不同位置,会造成粒子在磁场巾运动的时间不同,通过的路程不同,出射方向不同,从而形成不同的临界状态,小同的极值问题。
5.有界磁场的边界位置变化
相同粒子以相同的速度从同定的位置出发,途经有界磁场Ⅸ域,若磁场位置发生变化时,会引起粒子进入磁场时的入射位置或相对磁场的入射方向发生变化,从而可能引起粒子在磁场中运动时间、偏转角度、出射位置与方向等发生变化,进而形成临界与极值问题。
无约束情景下带电粒子在匀强复合场中的常见运动形式:
带电粒子在电磁组合场中运动时的处理方法:
1.电磁组合场
电磁组合场是指由电场和磁场组合而成的场,在空间同一区域只有电场或只有磁场,在不同区域中有不同的场。
2.组合场中带电粒子的运动
带电粒子在电场内可做加速直线运动、减速直线运动、类平抛运动、类斜抛运动,需要根据粒子进入电场时的速度方向、所受电场力,再南力和运动的关系来判定其运动形式。
粒子在匀强磁场中可以做直线运动,也可以做匀速圆周运动和螺旋运动,但在高中阶段通常涉及的是带电粒子所做的匀速圆周运动,通常需要确定粒子在磁场内做圆周运动进出磁场时的位置、圆心的位置、转过的圆心角、运动的时间等。
在电磁组合场问题中,需要通过连接点的速度将相邻区域内粒子的运动联系起来,粒子在无场区域内是做匀速直线运动的。解决此类问题的关键之一是画好运动轨迹示意图。
粒子在正交电磁场中做一般曲线运动的处理方法:
如图所示,一带正电的粒子从静止开始运动,所受洛伦兹力是一变力,粒子所做的运动是一变速曲线运动,若用动力学方法来处理其运动时,可将其运动进行如下分解:
①初速度的分解
因粒子初速度为零,可将初速度分解为水平向左和水平向右的两等大的初速度,令其大小满足
②受力分析按上述方法将初速度分解后,粒子在初始状态下所受外力如图所示。
③运动的分解将粒子向右的分速度,电场力,向上的洛伦兹力分配到一个分运动中,则此分运动中因,应是以速度所做的匀速运动。
将另一向左的分速度,向下的洛伦兹力分配到一个分运动中,则此分运动必是沿逆时针方向的匀速圆周运动。
④运动的合成
粒子所做的运动可以看成是水平向右的匀速直线运动与逆时针方向的匀速圆周运动的合运动。
a.运动轨迹
如图所示,
粒子运动轨迹与沿天花板匀速滚动的轮上某一定点的运动轨迹相同,即数学上所谓的滚轮线。
b.电场强度方向上的最大位移:
由两分运动可知,水平方向上的分运动不引起竖直方向上的位移,竖直方向上的最大位移等于匀速圆周分运动的直径:
可得
c.粒子的最大速率
由运动的合成可知,当匀速圆周分运动中粒子旋转到最低点时,两分运动的速度方向一致,此时粒子的速度达到最大:
解决复合场中粒子运动问题的思路:
解决电场、磁场、重力场中粒子的运动问题的方法可按以下思路进行。
(1)正确进行受力分析,除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析。
①受力分析的顺序:先场力(包括重力、电场力、磁场力),后弹力,再摩擦力等。
②重力、电场力与物体的运动速度无关,南质量决定重力的大小,由电荷量、场强决定电场力;但洛伦兹力的大小与粒子的速度有关,方向还与电荷的性质有关,所以必须充分注意到这一点。
(2)正确进行物体的运动状态分析,找出物体的速度、位置及变化,分清运动过程,如果出现临界状态,要分析临界条件。
(3)恰当选用解决力学问题的方法
①牛顿运动定律及运动学公式(只适用于匀变速运动)。
②用能量观点分析,包括动能定理和机械能(或能量)守恒定律。注意:不论带电体的运动状态如何,洛伦兹力永远不做功。
③合外力不断变化时,往往会出现临界状态,这时应以题中的“最大”、“恰好”等词语为突破口,挖掘隐含条件,列方程求解。
(4)注意无约束下的两种特殊运动形式
①受到洛伦兹力的带电粒子做直线运动时,所做直线运动必是匀速直线运动,所受合力必为零。
②在正交的匀强电场和匀强磁场组成的复合场中做匀速圆周运动的粒子,所受恒力的合力必为零。
与“在水平光滑的绝缘桌面内建立如图所示的直角坐标系,将第Ⅰ、Ⅱ...”考查相似的试题有: