返回

高中三年级数学

首页
  • 解答题
    如图,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B。

    (1)求证:A,M,B三点的横坐标成等差数列;
    (2)已知当M点的坐标为(2,-2p)时,|AB|=,求此时抛物线的方程;
    (3)是否存在点M,使得点C关于直线AB的对称点D在抛物线x2=2py(p>0)上,其中,点C满足(O为坐标原点),若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由。
    本题信息:2008年山东省高考真题数学解答题难度极难 来源:刘佩
  • 本题答案
    查看答案
本试题 “如图,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B。(1)求证:A,M,B三点的横坐标成等差数列;(2)已知...” 主要考查您对

等差数列的定义及性质

向量的加、减法运算及几何意义

线段的定比分点

抛物线的标准方程及图象

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等差数列的定义及性质
  • 向量的加、减法运算及几何意义
  • 线段的定比分点
  • 抛物线的标准方程及图象

等差数列的定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。


等差数列的性质:

(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;
(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;
(3)m,n∈N*,则am=an+(m-n)d;
(4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,有as+at=2ap
(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。
(6)
(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即
(8) 仍为等差数列,公差为


 


对等差数列定义的理解:

①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列. 
②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有
③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;
是证明或判断一个数列是否为等差数列的依据;
⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。

等差数列求解与证明的基本方法:

(1)学会运用函数与方程思想解题;
(2)抓住首项与公差是解决等差数列问题的关键;
(3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).


向量加法的定义:

已知非零向量ab,在平面内任取一点A,作,再做向量,则向量叫做的和,即
作向量的加法有“三角形法则”和“平行四边形法则”,其中“平行四边形法则”只适用于不共线的向量。

向量加法的三角形法则:

已知非零向量a,b,在平面内任意取一点A,作a,

这种求向量和的方法称为向量加法的三角形法则,如图
 
 
向量加法的平行四边形法则:
 
以同一点O起点的两个已知向量a,b为邻边作平行四边形OACB,则以O为起点的对角线OC就是ab的和,这种作两个向量和的方法叫做向量加法的平行四边形法则,如图.
  

向量减法的定义:

向量与向量的相反向量的和,叫做向量与向量的差,记作:
作向量减法有“三角形法则”:设,那么,由减向量和终点指向被减向量和终点。
注意:此处减向量与被减向量的起点相同。

向量减法的作图法:

 
 
  
 因此,a-b可以表示为从向量b的终点指向向量a的终点的向量,这就是向量减法的几何意义.

坐标运算:

已知,则


向量加减法的运算律:

(1)交换律:
(2)结合律:


求向量的和的三角形法则的理解:

使用三角形法则特别要注意“首尾相接”,具体做法是把用小写字母表示的向量,用两个大写字母表示(其中后面向量的起点与其前一个向量的终点重合,即用同一个字母表示),则由第一个向量的起点指向最后一个向量终点的有向线段就表示这些向量的和。对于n个向量,仍有 这可以称为向量加法的多边形法则。

作两个向量的和向量,可分四步:

①取点,注意取点的任意性;
②作相等向量,分别作与两个已知向量相等的向量,使它们的起点重合;
③作平行四边形,以两个向量为邻边作平行四边形;
④作和向量,与两个向量有共同起点的对角线作为和向量,共同的起点作为和向量的起点,对角线的另一个端点作为和向量的终点.当两个向量不共线时,三角形法则和平行四边形法则是一致的;当两个向量共线时,三角形法则同样适用,而平行四边形法则就不适用了.

向量的加法需要说明的几点:

①当两个非零向量ab不共线时,a+b的方向与a,b的方向都不相同,且
②当两个非零向量ab共线时,
a.向量ab同向(如下图),即向量a+ba(b)方向相同,且
 
b.向量ab反向(如上图)且|a|<|b|时,即a+bb方向相同(与a方向相反),且

综上可知

向量减法的理解:

①定义向量减法是借助了相反向量和向量加法,其实,向量减法的实质是向量加法的逆运算.两个向量的差仍是向量;
②作差向量时,作法一较为复杂,作法二较为简捷,应根据问题的需要灵活运用;
③以为邻边作平行四边形ABCD,则两条对角线表示的向量为这一结论在以后的应用是非常广泛的,应该加强理解并记住;
④对于任意一点O,简记为“中减起”,在解题中经常用到,必须记住.


线段的定比分点定义:

设点P是直线P1P2上异于P1、P2的任意一点,若存在一个实数λ,使P1P=λPP2,λ叫做点P分有向线段所成的比,P点叫做有向线段 的以定比为λ的定比分点。
当P点在线段 P1P2上时,λ>0;当P点在线段 P1P2的延长线上时,λ<-1;当P点在线段P2P1的延长线上时 -1<λ<0。
若点P分有向线段所成的比为λ,则点P分有向线段所成的比为

有向线段的定比分点的坐标公式:

(1)设
在使用定比分点的坐标公式时,应明确(x,y),(x1,y1),(x2,y2)的意义,即分别为分点,起点,终点的坐标。一般在计算中应根据题设,自行确定起点,分点和终点并根据这些点确定对应的定比λ。
(2)当λ=1时,就得到P1P2的中点公式:
(3)三角形ABC的重心公式:设,则重心


抛物线的标准方程及图像(见下表):


抛物线的标准方程的理解:

①抛物线的标准方程是指抛物线在标准状态下的方程,即顶点在原点,焦点在坐标轴上;
②抛物线的标准方程中的系数p叫做焦参数,它的几何意义是:焦点到准线的距离.焦点到顶点以及顶点到准线的距离均为
③抛物线的标准方程有四种类型,所以判断其类型是解题的关键,在方程的类型已确定的前提下,由于标准方程只有一个参数p,所以只需一个条件就可以确定一个抛物线的方程;
④对以上四种位置不同的抛物线和它们的标准方程进行对比、分析,得出其异同点。
共同点:
a.原点在抛物线上;
b.焦点都在坐标轴上;
c.准线与焦点所在轴垂直,垂足与焦点分别关于原点对称,它们与原点的距离都等于一次项系数的绝对值的
不同点:
a.焦点在x轴上时,方程的右侧为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2
b.开口方向与x轴(或y轴)的正半轴相同,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口方向与x轴(或y轴)的负半轴相同,焦点在x轴(或y轴)的负半轴上,方程的右端取负号.

求抛物线的标准方程的常用方法:

(1)定义法求抛物线的标准方程:定义法求曲线方程是经常用的一种方法,关键是理解定义的实质及注意条件,将所给条件转化为定义的条件,当然还应注意特殊情况.
(2)待定系数法求抛物线的标准方程:求抛物线标准方程常用的方法是待定系数法,为避免开口不确定,分成(p>0)两种情况求解的麻烦,可以设成(m,n≠0),若m、n>0,开口向右或向上;m、n<0,开口向左或向下;m、n有两解,则抛物线的标准方程各有两个。