返回

高中三年级物理

首页
  • 计算题
    如图所示,半径R=0.8m的四分之一光滑圆弧轨道位于竖直平面内,与长CD=2.0m的绝缘水平面平滑连接。水平面右侧空间存在互相垂直的匀强电场和匀强磁场,电场强度E=40N/C,方向竖直向上,磁场的磁感应强度B=1.0T,方向垂直纸面向外。两个质量均为m=2.0×10-6kg的小球a和b,a球不带电,b球带q=1.0×10-6C的正电,并静止于水平面右边缘处。将a球从圆弧轨道顶端由静止释放,运动到D点与b球发生正碰,碰撞时间极短,碰后两球粘合在一起飞入复合场中,最后落在地面上的P点。已知小球a在水平面上运动时所受的摩擦阻力f=0.1mg,PN=,取g=10m/s2。a、b均可作为质点。(结果保留三位有效数字)求:
    (1)小球a与b相碰后瞬间速度的大小v;
    (2)水平面离地面的高度h;
    (3)从小球a开始释放到落地前瞬间的整个运过程中ab系统损失的机械能ΔE。

    本题信息:2011年贵州省模拟题物理计算题难度极难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “如图所示,半径R=0.8m的四分之一光滑圆弧轨道位于竖直平面内,与长CD=2.0m的绝缘水平面平滑连接。水平面右侧空间存在互相垂直的匀强电场和匀强磁场,电场强度...” 主要考查您对

碰撞

带电粒子在复合场中的运动

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 碰撞
  • 带电粒子在复合场中的运动
碰撞:

1、特点:
①时间:过程持续时间即相互作用时间极短
②作用力:在相互作用的过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大
③动量守恒条件:系统的内力远远大于外力,所以,系统即使所受外力之和不为零,外力也可以忽略,系统的总动量守恒
④位移:碰撞过程是在一瞬间发生的,时间极短,所以,在物体发生碰撞的瞬间,可忽略物体的位移,可以认为物体在碰撞前后仍在同一位置
⑤能量:在碰撞过程中,一般伴随着机械能的损失,碰撞后系统的总动能要小于或等于碰撞前系统的总动能,
2、两物体相碰通常有以下三种情况
①两物体碰撞后,动能无损失,称为弹性碰撞。当两相等质量的物体发生弹性碰撞时,则发生速度交换,这是一个很有用的结论。
 
②两物体碰撞后虽分开,但动能有损失,称为非弹性碰撞。
 
③两物体碰撞后合为一个整体,以某一共同速度运动,称为完全非弹性碰撞。此类碰撞中动能损失最多,即动能转化为其他形式能的值最多。

弹性碰撞及讨论:

质量为m1与质量为m2的物体分别以速度运动并发生对心碰撞,碰撞过程中无机械能损失(如图所示)。

设碰后两物体的速度分别为
据动量守恒得
据机械能守恒得
由①②两式得
由上述表达式可以看出:
(1)若
(2)若即速度交换。
(3)若,即m2的速度几乎不变。

“一动一静”模型:

(1)弹性正碰,如图所示,在光滑水平面上质量为 m1的小球以速度v1与质量为m2的静止小球发生弹性正碰.

讨论碰后两球的速度根据动量守恒和机械能守恒有:

解上面两式可得:
碰后m1的速度
碰后m2的速度
讨论:
①若表示表示m1的速度不变,m2以2v1速度被撞出去。
②若都是正值,表示都与v1方向相同。
③若,则有即碰后两球速度互换。
④若为负值,表示方向相反, m1被弹回。
⑤若这时表示m1被反向以原速率弹回,而m2仍静止。

两物体碰后的速度随两物体的质量比变化情况如图所示。

⑦能量传递:在弹性碰撞中,传递的能量跟两者质量比有关,即两球质量越接近,碰撞中传递的动能越大;在两种情况下,传递的动能相等。
(2)完全非弹性碰撞上例中m1与m2发生完全非弹性碰撞,则有,碰后的共同速度
损失的动能

 “二合一”模型:

这种模型是指两个速度不同的物体通过发生相互作用,最终两物体粘在一起运动或以共同的速度运动的模型。
这种模型的主要特征是终态共速(也可以是只在某一时刻共速.而研究的过程是从初始到共速的过程),从能量角度来看,这种过程中能量损失是最大的,属于完全非弹性碰撞的类型,在一维碰撞中的方程有:

相互作用的两个物体在很多情况下皆可当成碰撞处理,那么对相互作用中两物体相距“恰最近”、相距 “恰最远”或“恰上升到最高点”等一类,临界问题,求解的关键都是“速度相等”。在“类碰撞”问题中,碰撞时间不一定很短,但遵守的规律却是相同的,例如下面几种情形。
(1)如图中,光滑水平面上的A物体以速度v0去撞击静止的B物体,A、B两物体相距最近时,两物体速度必定相等,此时弹簧最短,其压缩量最大,系统损失的动能等于弹簧获得的弹性势能,

(2)在图中,物体A以速度v0滑到静止在光滑水平面上的小车B上,当A在B上滑行的距离最远时,A、B相对静止,A、B的速度必定相等,系统损失的动能等于AB间摩擦产生的热量。

(3)在图中,子弹以速度v0射入静止在光滑的水平面上的木块中。当子弹不穿出时,子弹和木块的速度必定相等,系统损失的动能等于子弹与木块间摩擦产生的热量。

(4)如图所示,质量为M的滑块静止在光滑水平面上,滑块的光滑弧面底部与桌面相切,一个质量为m 的小球以速度v0向滑块滚来。设小球不能越过滑块,则小球到达滑块上的最高点时(即小球在竖直方向上的速度为零),两者的速度肯定相等(方向为水平向右),小球获得的重力势能等于系统损失的动能

碰撞合理性的判断方法:

碰撞的合理性要遵循动量守恒定律、能量关系和速度关系:
1.系统动量守恒
 
2.碰撞过程中系统的总动能不会增加
如果物体发生的是弹性碰撞,总动能不变;其他情况碰撞后会有部分动能转化为内能,系统的动能将减小。即

3.速度要符合情景如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即否则无法实现碰撞。碰撞后,原来在前的物体速度一定增大,且原来在前的物体速度大于或等于原来在后的物体速度,即否则碰撞没有结束。如果碰前两物体是相向运动,则碰后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。


复合场:

同时存在电场和磁场的区域,同时存在磁场和重力场的区域,同时存在电场、磁场和重力的区域,都叫做叠加场,也称为复合场。三种场力的特点:
①重力的大小为mg,方向竖直向下。重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始、终位置的高度差有关。
②电场力的大小为qE,方向与电场强度E及带电粒子所带电荷的性质有关。电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始、终位置的电势差有关。
③洛伦兹力的大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时,F=0;当带电粒子的速度与磁场方向垂直时,F=qvB。洛伦兹力的方向垂直于速度v和磁感应强度B所决定的平面。无论带电粒子做什么运动,洛伦兹力都不做功。
注:注意:电子、质子、α粒子、离子等微观粒子在叠加场中运动时,一般都不计重力。但质量较大的质点(如带电尘粒)在叠加场中运动时,不能忽略重力。

无约束情景下带电粒子在匀强复合场中的常见运动形式:



带电粒子在电磁组合场中运动时的处理方法:

1.电磁组合场
电磁组合场是指由电场和磁场组合而成的场,在空间同一区域只有电场或只有磁场,在不同区域中有不同的场。
2.组合场中带电粒子的运动
带电粒子在电场内可做加速直线运动、减速直线运动、类平抛运动、类斜抛运动,需要根据粒子进入电场时的速度方向、所受电场力,再南力和运动的关系来判定其运动形式。
粒子在匀强磁场中可以做直线运动,也可以做匀速圆周运动和螺旋运动,但在高中阶段通常涉及的是带电粒子所做的匀速圆周运动,通常需要确定粒子在磁场内做圆周运动进出磁场时的位置、圆心的位置、转过的圆心角、运动的时间等。
在电磁组合场问题中,需要通过连接点的速度将相邻区域内粒子的运动联系起来,粒子在无场区域内是做匀速直线运动的。解决此类问题的关键之一是画好运动轨迹示意图。

粒子在正交电磁场中做一般曲线运动的处理方法:

如图所示,一带正电的粒子从静止开始运动,所受洛伦兹力是一变力,粒子所做的运动是一变速曲线运动,若用动力学方法来处理其运动时,可将其运动进行如下分解:

 ①初速度的分解
因粒子初速度为零,可将初速度分解为水平向左和水平向右的两等大的初速度,令其大小满足
②受力分析按上述方法将初速度分解后,粒子在初始状态下所受外力如图所示。
 
③运动的分解将粒子向右的分速度,电场力,向上的洛伦兹力分配到一个分运动中,则此分运动中因,应是以速度所做的匀速运动。
将另一向左的分速度,向下的洛伦兹力分配到一个分运动中,则此分运动必是沿逆时针方向的匀速圆周运动。
④运动的合成
粒子所做的运动可以看成是水平向右的匀速直线运动与逆时针方向的匀速圆周运动的合运动。
a.运动轨迹
如图所示,
粒子运动轨迹与沿天花板匀速滚动的轮上某一定点的运动轨迹相同,即数学上所谓的滚轮线。
b.电场强度方向上的最大位移:
由两分运动可知,水平方向上的分运动不引起竖直方向上的位移,竖直方向上的最大位移等于匀速圆周分运动的直径:


可得
c.粒子的最大速率
由运动的合成可知,当匀速圆周分运动中粒子旋转到最低点时,两分运动的速度方向一致,此时粒子的速度达到最大:

解决复合场中粒子运动问题的思路:

解决电场、磁场、重力场中粒子的运动问题的方法可按以下思路进行。
(1)正确进行受力分析,除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析。
①受力分析的顺序:先场力(包括重力、电场力、磁场力),后弹力,再摩擦力等。
②重力、电场力与物体的运动速度无关,南质量决定重力的大小,由电荷量、场强决定电场力;但洛伦兹力的大小与粒子的速度有关,方向还与电荷的性质有关,所以必须充分注意到这一点。
(2)正确进行物体的运动状态分析,找出物体的速度、位置及变化,分清运动过程,如果出现临界状态,要分析临界条件。
(3)恰当选用解决力学问题的方法
①牛顿运动定律及运动学公式(只适用于匀变速运动)。
②用能量观点分析,包括动能定理和机械能(或能量)守恒定律。注意:不论带电体的运动状态如何,洛伦兹力永远不做功。
③合外力不断变化时,往往会出现临界状态,这时应以题中的“最大”、“恰好”等词语为突破口,挖掘隐含条件,列方程求解。
(4)注意无约束下的两种特殊运动形式
①受到洛伦兹力的带电粒子做直线运动时,所做直线运动必是匀速直线运动,所受合力必为零。
②在正交的匀强电场和匀强磁场组成的复合场中做匀速圆周运动的粒子,所受恒力的合力必为零。


发现相似题
与“如图所示,半径R=0.8m的四分之一光滑圆弧轨道位于竖直平面内...”考查相似的试题有: