返回

初中三年级数学

首页
  • 解答题
    已知二次函数y=x2-mx+m-2。
    (1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;
    (2)当该二次函数的图象经过点(3,6)时,求二次函数的解析式;
    (3)将直线y=x向下平移2个单位长度后与(2)中的抛物线交于A、B两点(点A在点B的左边),一个动点P自点A出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后到达点B,求使点P运动的总 路径最短的点E、点F的坐标,并求出这个最短总路径的长。
    本题信息:2010年北京模拟题数学解答题难度极难 来源:叶新丽
  • 本题答案
    查看答案
本试题 “已知二次函数y=x2-mx+m-2。(1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;(2)当该二次函数的图象经过点(3,6)时,求二次函数的解析式...” 主要考查您对

求二次函数的解析式及二次函数的应用

二次函数与一元二次方程

轴对称

勾股定理

平移

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 求二次函数的解析式及二次函数的应用
  • 二次函数与一元二次方程
  • 轴对称
  • 勾股定理
  • 平移
求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。

二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。

二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

③交点式:
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

由一般式变为交点式的步骤:
二次函数
∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
∴y=ax2+bx+c
=a(x2+b/ax+c/a)
=a[x2-(x1+x2)x+x1?x2]
=a(x-x1)(x-x2).
重要概念:
a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
a<0时,开口方向向下。a的绝对值可以决定开口大小。
a的绝对值越大开口就越小,a的绝对值越小开口就越大。
能灵活运用这三种方式求二次函数的解析式;
能熟练地运用二次函数在几何领域中的应用;
能熟练地运用二次函数解决实际问题。


二次函数的其他表达形式:
①牛顿插值公式:
f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 
二次函数表达式的右边通常为二次三项式。

双根式
y=a(x-x1)*(x-x2)
若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。

③三点式
已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))
则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)
与X轴交点的情况
当△=b2-4ac>0时,函数图像与x轴有两个交点。(x1,0), (x2,0);
当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。
Δ=b2-4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

二次函数解释式的求法:
就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。

1.巧取交点式法:
知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。
已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。
①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。
例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。
点拨:
解设函数的解析式为y=a(x+2)(x-1),
∵过点(2,8),
∴8=a(2+2)(2-1)。
解得a=2,
∴抛物线的解析式为:
y=2(x+2)(x-1),
即y=2x2+2x-4。

②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。
例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。
点拨:
在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。

2.巧用顶点式:
顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.
①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。
例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。
点拨:
解∵顶点坐标为(-1,-2),
故设二次函数解析式为y=a(x+1)2-2 (a≠0)。
把点(1,10)代入上式,得10=a·(1+1)2-2。
∴a=3。
∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。

②典型例题二:
如果a>0,那么当 时,y有最小值且y最小=
如果a<0,那么,当时,y有最大值,且y最大=
告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。
例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。
点拨:
析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。
由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。
∴抛物线的顶点为(4,-3)且过点(1,0)。
故可设函数解析式为y=a(x-4)2-3。
将(1,0)代入得0=a(1-4)2-3, 解得a=13.
∴y=13(x-4)2-3,即y=13x2-83x+73。
③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。
例如:
(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式.
(2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式.
(3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式.
(4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.

④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。
例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。
点拨:
解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。
∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,
∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。


二次函数与一元二次方程的关系:
函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0)。
那么一元二次方程的解就是二次函数图像与x轴焦点的横坐标,因此,二次函数图像与x轴的交点情况决定一元二次方程根的情况。
1、从形式上看:
二次函数:y=ax2+bx+c  (a≠0)
一元二次方程:ax2+bx+c=0  (a≠0)
2、从内容上看:
二次函数表示的是一对(x,y)之间的关系,它有无数对解;一元二次方程表示的是未知数x的值,最多只有2个值
3、相互关系:
二次函数与x轴交点的横坐标就是相应的一元二次方程的根。
如:y=x2-4x+3与x轴的交点是(1,0)、(3,0),则一元二次方程x2-4x+3=0的根是x=1或x=3

二次函数交点与二次方程根的关系:
抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方程ax2+bx+c=0的根的情况说明:
1、若△>0,则一元二次方程ax2+bx+c=0有两个不等的实数根,则抛物线y=ax2+bx+c与x轴有两个交点---相交;
2、若△=0,则一元二次方程ax2+bx+c=0有两个相等的实数根,则抛物线y=ax2+bx+c与x轴有唯一公共点---相切(顶点);
3、若△<0,则一元二次方程ax2+bx+c=0没有实数根,则抛物线y=ax2+bx+c与x轴没有公共点--相离。
若抛物线y=ax2+bx+c与轴的两个交点坐标分别是A(x1,0),B(x2,0),则x1+x2=-,x1x2=


点拨:
①解一元二次方程实质上就是求当二次函数值为0时的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。
②若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2(x1<x2),则抛物线y=ax2+bx+c与x轴的交点为(x1,0),(x2,0),对称轴为x=x1+x2/2。
③若a>0,当x<x1,或x>x2时,y>0;当x1<x<x2时,y<0。
若a< 0,当x1<x<x2时,y>0;当x<x1或x>x2时,y<0。
④如果抛物线y=ax2+bx+c与x轴交于M(x1,0),N(x2,0),则MN=√b2-4ac/|a|。


轴对称的定义:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

轴对称的性质:
(1)对应点所连的线段被对称轴垂直平分;
(2)对应线段相等,对应角相等;
(3)关于某直线对称的两个图形是全等图形。


轴对称的判定:
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
这样就得到了以下性质:
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 
4.对称轴是到线段两端距离相等的点的集合。

轴对称作用:
可以通过对称轴的一边从而画出另一边。
可以通过画对称轴得出的两个图形全等。
扩展到轴对称的应用以及函数图像的意义。

轴对称的应用:
关于平面直角坐标系的X,Y对称意义
如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

关于二次函数图像的对称轴公式(也叫做轴对称公式 )
设二次函数的解析式是 y=ax2+bx+c
则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
譬如,等腰三角形经常添设顶角平分线;
矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
正方形,菱形问题经常添设对角线等等。
另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。


勾股定理:
直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
勾股定理只适用于直角三角形,应用于解决直角三角形中的线段求值问题。
定理作用
⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。
⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。
勾股定理的应用:
数学
从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。
勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。

生活
勾股定理在生活中的应用也较广泛,举例说明如下:
1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:
第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;
第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;
第三,屏幕底部应离观众席所在地面最少122厘米。
屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。
2、2005年珠峰高度复测行动。
测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。
通俗来说,就是分三步走:
第一步,先在珠峰脚下选定较容易的、能够架设水准仪器的测量点,先把这些点的精确高程确定下来;
第二步,在珠峰峰顶架起觇标,运用三角几何学中“勾股定理”的基本原理,推算出珠峰峰顶相对于这几个点的高程差;
第三步,获得的高程数据要进行重力、大气等多方面的改正计算,最终确定珠峰高程测量的有效数据。
定义:
将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。

平移基本性质:
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
平移的条件:确定一个平移运动的条件是平移的方向和距离。

平移的三个要点
1 原来的图形的形状和大小和平移后的图形是全等的。
2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
3 平移的距离。(长度,如7厘米,8毫米等)

平移作用:
1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。


平移作图的步骤:
(1)找出能表示图形的关键点;
(2)确定平移的方向和距离;
(3)按平移的方向和距离确定关键点平移后的对应点;
(4)按原图的顺序,连结各对应点。
发现相似题
与“已知二次函数y=x2-mx+m-2。(1)求证:无论m为任何实数,该二...”考查相似的试题有: