返回

高中物理

首页
  • 多选题
    关于物理学的研究方法,下列叙述正确的是(  )
    A.伽利略利用斜面实验研究自由落体运动时,采用了微小量放大的思想方法
    B.用点电荷来代替实际带电体是采用了理想模型的方法
    C.在探究加速度与力、质量的关系时,利用了控制变量的思想方法
    D.法拉第在研究电磁感应现象时,采用了理想实验的方法

    本题信息:2011年渭南一模物理多选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “关于物理学的研究方法,下列叙述正确的是( )A.伽利略利用斜面实验研究自由落体运动时,采用了微小量放大的思想方法B.用点电荷来代替实际带电体是采用了理...” 主要考查您对

自由落体运动

牛顿第二定律

电荷、元电荷

法拉第电磁感应定律

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 自由落体运动
  • 牛顿第二定律
  • 电荷、元电荷
  • 法拉第电磁感应定律

自由落体运动:
物体只在重力作用下从静止开始下落的运动叫做自由落体运动。

自由落体运动的公式:
v=gt;h=gt2;v2=2gh。

运动性质:
自由落体运动是初速度为零的匀加速直线运动。

自由落体加速度:
在同一地点,一切物体在自由落体运动中的加速度都相同,这个加速度叫自由落体加速度,也叫重力加速度。


物体做自由落体运动的条件:

①只受重力而不受其他任何力,包括空气阻力。
②从静止开始下落。

重力加速度g:

①方向:总是竖直向下的。
②大小:g=9.8m/s2,粗略计算可取g=10m/s2
③在地球上不同的地方,g的大小不同.g随纬度的增加而增大(赤道g最小,两极g最大),g随高度的增加而减小。


知识点拨:

自由落体运动的规律:
自由落体运动是初速度为零的匀加速直线运动,所以,匀变速直线运动公式也适用于自由落体运动。


小知识--重力加速度:

①把地球当做旋转椭球,重力加速度计算公式为:g=9.7803(1+0.0052884-0.00000592)m/s2
    
式中为物体所在处的地理纬度
②重力加速度还和物体离地面的高度h有关。当h远小于地球半径R时,

小知识—空气阻力:

空气阻力是物体在空气中运动时受到的阻力。空气阻力的大小与物体相对于空气的速度、物体的形状等都有很大的关系。


内容:

物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s2加速度的力,叫做1N(kg·m/s2=N)。

对牛顿第二定律的理解:

①模型性
牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。
②因果性
力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。
③矢量性
合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。
④瞬时性
加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
⑤同一性(同体性)
中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
⑥相对性
中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。
⑦独立性
F产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:
⑧局限性(适用范围)
牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。
牛顿第二定律的应用:

1.应用牛顿第二定律解题的步骤:
(1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=
对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。
(2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。
(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
(4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
2.两种分析动力学问题的方法:
(1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。
(2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。
①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:(沿加速度方向),(垂直于加速度方向)。
②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。
3.应用牛顿第二定律解决的两类问题:
(1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下:

(2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:

可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。
知识扩展:

1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。
2.关于a、△v、v与F的关系
(1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。
(2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。
(3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。

电荷、电荷守恒定律:

 1.涉及电荷的基本概念
(1)电荷自然界中存在着两种电荷,它们分别为正电荷和负电荷。用毛皮摩擦过的橡胶棒上带的电荷叫负电荷,用丝绸摩擦过的玻璃棒上带的电荷叫正电荷。同种电荷互相排斥,异种电荷互相吸引。
(2)电荷量电荷量是指物体带电的多少。电荷量是电荷的定量量度。正电荷的电荷量为正值,负电荷的电荷量为负值。尽管电荷量有正、负值(正号一般省略),但要知道这里的“+”、“-”号代表电荷的性质(种类),与数学中的正、负号的含义不同。在国际单位制中,电荷量的单位是库仑,简称库,符号c。
(3)元电荷电子和质子带有等量的异种电荷,其电荷量e: 1.60×10-19C,称为元电荷,用e表示。所有带电体的电荷量都是元电荷e的整数倍,这就是说电荷量是不能连续变化的物理量。无电荷不是电荷,它是指电荷的电荷量,电荷量1.60×10-19C称为元电荷。元电荷的数值最早是由美国科学家密立根用实验测得的。所有带电体的电荷量等于元电荷或者等于元电荷的整数倍。质子、电子都不叫元电荷,它们电荷量的绝对值才叫元电荷。
(4)点电荷形状和大小对研究问题的影响可以忽略的带电体称为点电荷。
①点电荷是无大小、无形状、只有电荷量的一个理想化模型。在实际问题中,只有当带电体间的距离比它们自身的大小大得多,以至于带电体的形状和大小对相互作用力的影响可以忽略不计时,带电体才可以被视为点电荷。
②一个带电体能否被视为点电荷完全取决于自身的几何形状、大小与其他带电体之间的距离的比较。即带电体很小,不一定可被视为点电荷,带电体很大,也不一定不能被视为点电荷。
(5)感应电荷当一个带电体靠近导体时,南于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷。这种现象叫做静电感应。由于静电感应而使导体两端出现的等量异号电荷通常叫做感应电荷。其特点是:不带电导体靠近带电体时,靠近带电体的一端出现与带电体电性相反的电荷,远离带电体的一端出现与带电体电性相同的电荷。
(6)场源电荷电场是由电荷产生的,我们把产生电场的电荷叫做场源电荷。
(7)试探电荷研究电场的基本方法之一是在电场中放入一带电荷量很小的点电荷,分析其受力和能量情况,借以研究电场的性质,这样的电荷称为试探电荷。作为试探电荷的带电体,基本要求是体积要小,能研究电场中每一点的性质,还要求带电体所带电荷量要少.以放入试探电荷后试探电荷对原电场的影响可忽略为原则。
(8)净电荷物体带电实质是得到或失去了电子,讨论物体带何种电荷,所带电荷量是多少,是指物体的净电荷是正还是负,物体所具有的总电荷中正、负电荷的差值是多少,电荷量是物体中净电荷的多少。
(9)比荷带电体所带电荷量与其质量之比叫做该带电体的比荷。比荷是一个重要的物理量,常用来描述微观粒子的性质,在国际单位制中其单位为库仑每千克,符号 C/kg。


法拉第电磁感应定律:




导体切割磁感线的两个特例:

的区别与联系及选用原则:



电磁感应中动力学问题的解法:

电磁感应和力学问题的综合,其联系的桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系。
1.分析思路
(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。
(2)求回路中的电流。
(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向)。
(4)列动力学方程或平衡方程求解。
2.常见的动态分析这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解这类问题时正确进行动态分析确定最终状态是解题的关键。同时也要抓好受力情况和运动情况的动态分析,研究顺序为:导体受力运动产生感应电动势一感应电流一通电导体受安培力一合外力变化一加速度变化一速度变化一周而复始地循环,循环结束时,加速度等于零.导体达到稳定运动状态。

电磁感应中的动力学临界问题:

(1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度求最大值或最小值的条件。
(2)基本思路:


发现相似题
与“关于物理学的研究方法,下列叙述正确的是( )A.伽利略利用...”考查相似的试题有: