返回

高中物理

首页
  • 问答题
    如图所示,水平放置的两金属极板长度为L,相距为d,极板间的电压为U,两极板间的电场可视为匀强电场.一质量为m、电荷量为q的带正电的粒子从极板中央水平射入电场中,射入时的速度为v0,并从电场的右端射出.若不计粒子的重力,求该粒子射出时速度偏转角的正切值.
    魔方格

    本题信息:物理问答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “如图所示,水平放置的两金属极板长度为L,相距为d,极板间的电压为U,两极板间的电场可视为匀强电场.一质量为m、电荷量为q的带正电的粒子从极板中央水平射入...” 主要考查您对

匀速直线运动

力的合成

力的分解

牛顿第二定律

电场强度的定义式

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 匀速直线运动
  • 力的合成
  • 力的分解
  • 牛顿第二定律
  • 电场强度的定义式

定义:
在任意相等的时间内位移相等的直线运动叫做匀速直线运动。

特点:
加速度a=0,速度v=恒量。

位移公式:
S=vt。


知识点拨:

  1. 匀变速直线运动是在相等时间内速度变化相等的直线运动。注意在此定义中所涉及的“相等时间内”应理解为任意相等的时间内,而非一些特定相等的时间内。
  2. 做匀速直线运动的物体在任意相同时间内通过的路程都相等,即路程与时间成正比;速度大小不随路程和时间变化;位移与路程的大小相等。
  3. 匀速直线运动是理想状态与实际的结合。匀速直线运动不常见,因为物体做匀速直线运动的条件是不受外力或者所受的外力和为零,但是我们可以把一些运动近似地看成是匀速直线运动。如:滑冰运动员停止用力后的一段滑行、站在商场自动扶梯上的顾客的运动等等。我们可用公式v=s/t求得他们的运动速度。式中,s为位移,v为速度且为恒矢量,t为发生位移s所用的时间。由公式可以看出,位移是时间的正比例函数:位移与时间成正比。
  4. 当物体处于匀速直线运动时,物体受力平衡。
  5. 做匀速直线运动的物体其速度是保持不变的,因此,如果知道了某一时刻(或某一距离)的运动速度,就知道了它在任意时间段内或任意运动点上的速度。

                             


合力与分力:

当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做这个力的分力。
①合力与分力是针对同一受力物体而言的。
②一个力之所以是其他几个力的合力,或者其他几个力之所以是这个力的分力,是冈为这一个力的作用效果与其他几个力共同作用的效果相当,合力与分力之间的关系是一种等效替代的关系。
③合力可能大于任何一个分力,也可能小于任何一个分力,也可能介于两个分力之间。
④如果两个分力的大小不变,夹角越大,合力就越小;夹角越小,合力就越大。
⑤两个大小一定的力F1、F2,其合力的大小范围


力的运算法则:

1.平行四边形定则
作用在同一点的两个互成角度的力的合力,不等于两分力的代数和,而是遵循平行四边形定则。如果以表示两个共点力F1和F2的线段为邻边作平行四边形,那么合力F的大小和方向就可以用这两个邻边之间的对角线表示,这叫做力的平行四边形定则,如图所示。

2.三角形定则和多边形定则如图(a)所示,两力F1、F2合成为F的平行四边形定则,可演变为(b)图,我们将(b)图称为三角形定则合成图,即将两分力F1、F2首尾相接,则F就是由F,的尾端指向F2的首端的有向线段所表示的力。

如果是多个力合成,则由三角形定则合成推广可得到多边形定则,如图为三个力F1,F2、F3的合成图,F 为其合力。


力的合成与分解:

(1)定义:求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。
(2)力的合成与分解的具体方法
a.作图法:选取统一标度,严格作出力的图示及平行四边形,然后用统一标度去度量各个力的大小;
b.计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求合力或分力的大小。一般要求会解直角三角形。

力的分解的几种情况:




分解方法:



几种按效果分解的实例:





由力的三角形定则求力的最小值:

(1)当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2最小的条件是:两个分力垂直,如图甲。最小值
(2)当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2最小的条件是:所求分力F2与合力F垂直,如图乙。最小值
 
(3)当已知合力F的大小及一个分力F1的大小时,另一个分力F2最小的条件是:已知大小的分力F1与合力 F同方向。最小值

由圆的切线求力方向的极值:

(1)当已知两分力F1、F2的大小时,合力,的方向与较大分力间夹角有最大值,与较小分力间夹角有最小值。如图所示,设两分力中F1较大,则合力F与F1之间最大夹角θ满足
(2)当已知合力F与其中一个分力F1的大小时,若F >F1,则另一个分力F2与合力F的方向间夹角有一最大值。如图所示,其最大夹角θ满足。若F<F1时,则另一个分力F2与合力F间夹角无极值,可在0~180之间变化:当F1与F同向时分力F2与合力F之间夹角最大,为180;当F1与F反向时分力F2与合力 F之间夹角最小,为0,但两分力间夹角有最大值,其最大值满足


内容:

物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s2加速度的力,叫做1N(kg·m/s2=N)。

对牛顿第二定律的理解:

①模型性
牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。
②因果性
力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。
③矢量性
合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。
④瞬时性
加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
⑤同一性(同体性)
中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
⑥相对性
中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。
⑦独立性
F产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:
⑧局限性(适用范围)
牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。
牛顿第二定律的应用:

1.应用牛顿第二定律解题的步骤:
(1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=
对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。
(2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。
(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
(4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
2.两种分析动力学问题的方法:
(1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。
(2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。
①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:(沿加速度方向),(垂直于加速度方向)。
②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。
3.应用牛顿第二定律解决的两类问题:
(1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下:

(2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:

可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。
知识扩展:

1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。
2.关于a、△v、v与F的关系
(1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。
(2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。
(3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。

电场强度:



计算场强的四种方法:

 1.计算电场强度的常用方法——公式法
(1)是电场强度的定义式,适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q充当“测量工具”的作用。
(2)要是真空中点电荷电场强度的计算式,E 由场源电荷Q和某点到场源电荷的距离r决定。
(3)是场强与电势差的关系式,只适用于匀强电场,注意式中的d为两点间的距离在场强方向的投影。
2.计算多个电荷形成的电场强度的方法——叠加法
当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵循矢量合成的平行四边形定则。
3.计算特殊带电体产生的电场强度的方法
(1)补偿法对于某些物理问题,当直接去解待求的A很困难或没有条件求解时,可设法补上一个B,补偿的原则是使A+B成为一个完整的模型,从而使A+B变得易于求解,而且,补上去的B也必须容易求解。这样,待求的A便可从两者的差值中获得,问题就迎刃而解了,这就是解物理题时常用的补偿法。用这个方法可算出一些特殊的带电体所产生的电场强度。
(2)微元法在某些问题中,场源带电体的形状特殊,不能直接求解场源带电体在空间某点所产生的总电场,此时可将场源带电体分割,在高中阶段,这类问题中分割后的微元常有部分微元关于待求点对称,这就可以利用场的叠加及对称性来解题。
4.计算感应电荷产生的电场强度的常用方法—— 静电平衡法根据静电平衡时导体内部场强处处为零的特点,外部场强与感应电荷产生的场强(附加电场)的合场强为零,可知,这样就可以把复杂问题变简单了。


发现相似题
与“如图所示,水平放置的两金属极板长度为L,相距为d,极板间的...”考查相似的试题有: