返回

高中二年级生物

首页
  • 填空题
    棉花的纤维有白色的,也有紫色的;棉花植株有抗虫的也有不抗虫的。为了培育出紫色纤维抗虫棉新品种,现用紫色不抗虫植株分别与白色抗虫植株a、b进行杂交(假定控制两对性状的基因独立遗传;颜色和抗虫与否的基因可分别用A、a和B、b表示),结果如下表:

    请分析回答:
    (1)上述两对性状中___________和__________分别是显性性状。
    (2)作出上述判断所运用的遗传定律是_____________。
    (3)亲本中白色抗虫a、白色抗虫b的基因型分别是_____________。
    (4)利用杂交原理说明培育紫色纤维抗虫棉新品种的育种方法。
    (5)如果用X射线、紫外线照射紫色不抗虫棉花的萌发种子,培育出了紫色抗虫的新类型,属于_____________育种;如果用紫色不抗虫棉花的花药离体培育成新品种系属___________育种。
    本题信息:2011年河北省期末题生物填空题难度较难 来源:姚瑶
  • 本题答案
    查看答案
本试题 “棉花的纤维有白色的,也有紫色的;棉花植株有抗虫的也有不抗虫的。为了培育出紫色纤维抗虫棉新品种,现用紫色不抗虫植株分别与白色抗虫植株a、b进行杂交(假定...” 主要考查您对

生物的性状

分离定律

基因型和表现型

杂交育种

诱变育种

基因工程的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 生物的性状
  • 分离定律
  • 基因型和表现型
  • 杂交育种
  • 诱变育种
  • 基因工程的应用
生物的性状:

1、生物性状:生理方面的特征,形态方面的特征和行为方式的特征。
2、性状类型:
(1)相对性状:一种生物的同一种性状的不同表现类型。
(2)性状分离:杂种后代中,同时出现显性性状和隐性性状的现象。
如在DD×dd杂交实验中,杂合F1代自交后形成的F2代同时出现显性性状(DD及Dd)和隐性性状(dd)的现象。
(3)显性性状:在DD×dd杂交试验中,F1表现出来的性状;
如教材中F1代豌豆表现出高茎,即高茎为显性。决定显性性状的为显性遗传因子(基因),用大写字母表示。如高茎用D表示。
(4)隐性性状:在DD×dd杂交试验中,F1未显现出来的性状;
如教材中F1代豌豆未表现出矮茎,即矮茎为隐性。决定隐性性状的为隐性基因,用小写字母表示,如矮茎用d表示。等位基因:控制相对性状的基因。
(5)显性相对性:具有相同性状的亲本杂交,杂种子一代中不分显隐性,表现出两者的中间性状(不完全显性)或者是同事表现出两个亲本的性状(共显性)。

知识点拨:

1、生物的性状表现是基因型与环境相互作用的结果。
2、生物性状的鉴定:
①鉴定一只白羊是否纯合——测交
②在一对相对性状中区分显隐性——杂交
③不断提高小麦抗病品种的纯合度——自交
④检验杂种F1的基因型——测交

 基因的分离定律及应用:

1.基因的分离定律
(1)内容:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
(2)实质:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。
(3)适用范围:①一对相对性状的遗传;②细胞核内染色体上的基因;③进行有性生殖的真核生物。
(4)细胞学基础:同源染色体分离。
(5)作用时间:有性生殖形成配子时(减数第一次分裂后期)。
2、分离定律在实践中的应用
(1)正确解释某些遗传现象两个有病的双亲生出无病的孩子,即“有中生无”,肯定是显性遗传病;两个无病的双亲生出有病的孩子,即“无中生有”,肯定是隐性遗传病。

(2)指导杂交育种
①优良性状为显性性状:连续自交,直到不发生性状分离为止,收获性状不发生分离的植株上的种子,留种推广。
②优良性状为隐性性状:一旦出现就能稳定遗传,便可留种推广。
③优良性状为杂合子:两个纯和的不同性状个体杂交后代就是杂合子,但每年都要配种。
(3)禁止近亲结婚的原理每个人都携带5~6种不同的隐性致病遗传因子。近亲结婚的双方很可能是同一种致病因子的携带者,他们的子女患隐性遗传病的机会大大增加,因此法律禁止近亲结婚。 


交配方式类:

1、杂交:基因型不同的个体间相互交配的过程。
2、自交:植物中自花传粉和雌雄异花的同株传粉。广义上讲,基因型相同的个体间交配均可称为自交。自交是获得纯合子的有效方法。
3、测交:就是让杂种(F1)与隐性纯合子杂交,来测F1基因型的方法。
4、正交与反交:对于雌雄异体的生物杂交,若甲♀×乙♂为正交,则乙♀×甲♂为反交。
 5、常用符号的含义
符号  P F1  F2  ×  ♀ C、D等 c、d等
 含义 亲本 子一代 子二代 杂交 自交  父本(雄配子)  母本(雌配子)   显性遗传因子  隐性遗传因子

孟德尔杂交实验的科学方法:

1.遗传学实验的科学杂交方法
项目 注意事项

人工异花传粉示意图

操作步骤 去雄  套袋 人工授粉套袋
套袋 去掉雄蕊后套袋是为了防止其他花粉与雌蕊接触而完成受精作用
去雄时间 花蕊成熟之前
去雄程度 要彻底、全部清除干净
人工授粉 待花蕊成熟后,用毛笔蘸取父本的花粉,涂抹在已去雄的花的雌蕊柱头上
2.假说一演绎法分析
(1)假说一演绎法:在观察和分析的基础上提出问题以后,通过推理和想像提出解释问题的假说,根据假说进行演绎推理,再通过实验检验演绎推理的结论。如果实验结果与预期结论相符,就证明假说是正确的,反之,则说明假说是错误的。这是现代科学研究中常用的一种科学方法,叫做假说一演绎法。
(2)一对相对性状的杂交实验“假说一演绎分析” 
      

一对相对性状的杂交实验:

1、实验过程及结果(如下图)

2、对分离现象的解释
(l)生物的性状是由遗传因子决定的。
(2)体细胞中遗传因子是成对存在的。
(3)生物在形成生殖细胞——配子时,成对的遗传因子彼此分离,分别进入不同的配子中。
(4)受精时,雌、雄配子的结合是随机的。
3、对分离现象解释的验证——测交(如下图)

结果证实了:
①F1是杂合子,基因型为Dd;
②F1能产生D和d两种配子且比例相等;
③F1在形成配子过程中,D和d能彼此分离(即没有融合)。
4、孟德尔的研究思路:假说一演绎法

(3)设计测交实验,验证假说。
(4)归纳综合,总结规律:基因的分离定律。
表解基因的分离定律和自由组合定律的不同:

分离定律 自由组合定律
 两对相对性状  n对相对性状
 相对性状的对数  1对 2对 n对
等位基因及位置  1对等位基因位于1对同源染色体上  2对等位基因位于2对同源染色体上  n对等位基因位于n对同源染色体上
  F1的配子  2种,比例相等 4种,比例相等 2n种,比例相等
  F2的表现型及比例 2种,3:1 4种,9:3:3:1 2n种,(3:1)n
 F2的基因型及比例 3种,1:2:1  9种,(1:2:1)2  3n种,(1:2:1)n
测交后代表现型及比例 2种,比例相等 4种,比例相等 2n种,比例相等
遗传实质 减数分裂时,等位基因随同源染色体的分离而分开,分别进入不同配子中 减数分裂时,在等位基因随同源染色体分开而分离的同时,非同源染色体上的非等位基因自由组合,进而进入同一配子中
实践应用 纯种鉴定及杂种自交纯合 将优良性状重组在一起
联系 在遗传中,分离定律和自由组合定律同时起作用:在减数分裂形成配子时,既有同源染色体上等位基因的分离,又有非同源染色体上非等位基因的自由组合

知识点拨:

分离定律实验注意
1、亲本上结的种子为F1,F1植株上结的种子为F2
2、亲本产生的雌雄配子数量不等,雄配子数量远远多于雌配子,基因型为Dd的植物产生的雄配子中,含D的和含d的相等,雌配子中含D的和含d的相等。 


杂合子Aa连续自交后代分析:

1、杂合子连续自交n次后,第n代的情况如下表:
Fn  杂合子  纯合子 显性纯合子 隐性纯合子 显性性状个体  隐性性状个体
所占比例 1/2n  1-1/2n 1/2-1/2n+1 1/2-1/2n+1    1/2+1/2n+1 1/2-1/2n+1

 2  、曲线分析
根据上表比例,杂合子、纯合子所占比例坐标曲线图为:


注:1、自交n次后,第n代杂合子比例为1/2n,其余为纯合子,且显性纯合子与隐性纯合子比例为1:1,据此原理,可只记忆杂合子的计算公式,其他比例由此推到即可。
2、在育种实践中,可通过让杂合子连续自交的方法来提高纯合子所占的比例。
知识拓展:

1、孟德尔遗传规律的发现是运用了“假说一演绎法”的结果,孟德尔以高茎纯种豌豆和矮茎纯种豌豆作亲本,分别设计了纯合亲本杂交、F1的自交、F1的测交三组实验
①在现象分析阶段完成的实验是纯合亲本杂交和 F1的自交。
②孟德尔在解释一对相对性状的杂交实验现象时,提出的假设是控制生物性状的成对的遗传因子在形成配子时会彼此分离,分别进入不同的配子中,随配子遗传给后代。
③在检验假设阶段完成的实验是F2的测交。
2、萨顿利用类比推理,提出“基因在染色体上” 的假说;摩尔根利用“假说—演绎法”找到基因在染色体上的实验证据。
3、DNA半保留复制的提出也是“假说一演绎法” 的正确运用。沃森和克里克在发现了DNA分子的双螺旋结构后,又提出了遗传物质半保留复制的假说。 1958年,科学家以大肠杆菌为实验材料,运用同位素标记法设计了巧妙的实验,实验结果与根据假说一演绎推导的预期现象一致,证实了DNA的确是以半保留方式复制的。
4、基因的分离定律和自由组合定律中,F1和F2要表现特定的分离比,应具备以下条件。
①所研究的每一对相对性状只受一对等位基因控制,且相对性状为完全显性。
②不同类型的雌、雄配子都能发育良好,且受精的机会均等。
③所有后代都处于比较一致的环境中,且存活率相同。
④进行实验的群体要大,个体数量要足够多。
5、常见问题解题方法
(1)如果后代性状分离比为显:隐=3:1,则双亲一定都是杂合子(Dd)。即Dd×Dd→3D_:1dd
(2)若后代性状分离比为显:隐=1:1,则双亲一定是测交类型。即Dd×dd→1Dd:1dd
(3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。即DD×DD或DD×Dd或DD×dd
分离定律的实质:减Ⅰ分裂后期等位基因分离。

基因型和表现型:

1、表现型:指生物个体表现出来的性状,如豌豆的高茎和矮茎。
2、基因型:与表现型有关的基因组成,如高茎豌豆的基因型是DD或Dd,矮茎豌豆的基因型是dd。
3、等位基因:控制相对性状的基因。
4、纯合子:由两个基因型相同的配子结合而成的合子,再由此合子发育而成的新个体。如基因型为 AAbb、XBXB、XBY的个体都是纯合子。纯合子的基因组成中无等位基因,只能产生一种基因型的配子(雌配子或雄配子),自交后代无性状分离。
 5、杂合子:由两个基因型不同的配子结合而成的合子,再由此合子发育而成的新个体。如基因型为 AaBB、AaBb的个体。杂合子的基因组成至少右一对等位基因,因此至少可形成两种类型的配子(雌配子或雄配子),自交后代出现性状分离。


表现型与基因型的相互推导:

1、由亲代推断子代的基因型与表现型(正推型)
亲本 子代基因型 子代表现型
AA×AA AA 全为显性
AA×Aa AA:Aa=1:1 全为显性
AA×aa Aa 全为显性
Aa×Aa AA:Aa:aa=1:2:1 显性:隐性=3:1
aa×Aa Aa:aa=1:1 显性:隐性=1:1
aa×aa aa 全为隐性

2、由子代推断亲代的基因型(逆推型)
①隐性纯合突破方法:若子代出现隐性性状,则基因型一定是aa,其中一个a来自父本,另一个a来自母本。 ②后代分离比推断法
后代表现型 亲本基因型组合 亲本表现型
全显 AA×AA(或Aa或aa) 亲本中一定有一个是显性纯合子
全隐 aa×aa 双亲均为隐性纯合子
显:隐=1:1 Aa×aa 亲本一方为显性杂合子,一方为隐性纯合子
显:隐=3:1 Aa×Aa 双亲均为显性杂合子

3、用配子的概率计算
(1)方法:先算出亲本产生几种配子,求出每种配子产生的概率,再用相关的两种配子的概率相乘。
(2)实例:如白化病遗传,Aa×Aa1AA:2Aa:laa,父方产生A、a配子的概率各是1/2,母方产生A、a配子的概率也各是1/2,因此生一个白化病(aa)孩子的概率为1/2×1/2=1/4。
3、亲代的基因型在未确定的情况下,如何求其后代某一性状发生的几率例如:一对夫妇均正常,且他们的双亲也都正常,但双方都有一白化病的兄弟,求他们婚后生白化病孩子的几率是多少?
解此题分三步进行:
(1)首先确定该夫妇的基因型及其几率。由前面分析可推知该夫妇是Aa的几率均为2/3,是AA的几率均为1/3。
(2)假设该夫妇均为Aa,后代患病可能性为1/4。
(3)最后将该夫妇均为Aa的几率2/3×2/3与假设该夫妇均为Aa情况下生白化病忠者的几率1/4相乘,其乘积1/9即为该夫妇后代中出现百化病患者的几率。
知识点拨:

1、基因型相同,表现型不一定相同;表现型相同,基因型也不一定相同。表现型是基因型与环境共同作用的结果。
2、显隐性关系不是绝对的,生物体内在环境和所处的外界环境的改变都会影响显性性状的表现。
常考比例:

分离定律比例:3:1;自由组合比例:9:3:3:1
(1)配子类型问题  如:AaBbCc产生的配子种类数为2×2×2=8种
(2)基因型类型   如:AaBbCc×AaBBCc,后代基因型数为多少?
先分解为三个分离定律:
Aa×Aa后代3种基因型(1AA:2Aa:1aa)Bb×BB后代2种基因型(1BB:1Bb)
Cc×Cc后代3种基因型(1CC:2Cc:1cc)所以其杂交后代有3x2x3=18种类型。
(3)表现类型问题  如:AaBbCc×AabbCc,后代表现数为多少?
先分解为三个分离定律:
Aa×Aa后代2种表现型  Bb×bb后代2种表现型 Cc×Cc后代2种表现型
所以其杂交后代有2x2x2=8种表现型。
(4)遗传病的基因型和表现型比例
例:人类多指基因(T)对手指正常基因(t)为显性,白化基因(a)对正常肤色基因(A)为隐性,两对非等位基因遵循基因的自由组合定律遗传,一家庭中,父亲多指,母亲正常。他们有一个白化病但手指正常的孩子,则下一个孩子正常或同时患有此两种疾病的几率分别是3/8、1/8
杂交育种:

1、杂交育种概念:将两个或多个品种的优良性状通过交配集中在一起,再经过选择和培育,获得新品种的方法。
2、原理:基因重组。
3、常用方法:杂交→自交→选优→自交。
4、优点:使位于不同个体中的优良性状集中于同一个体上。
5、缺点:优良性状的纯化过程需数代,育种年限较长。
6、杂交育种的步骤
①培育杂合子品种在农业生产上,可以将杂种一代作为种子直接利用,如水稻、玉米等。
a.基本步骤:选取双亲P(♀、♂)→杂交→F1。
b.特点:高产、优质、抗性强,但种子只能种一年。
②培育纯合子品种
a.培育隐性纯合子品种的基本步骤:选取双亲P (♀、♂)→杂交→F1→自交→F2→选出表现型符合要求的个体推广种植。
b.培育双显纯合子或一隐一显纯合子品种的基本步骤:选取双亲P(♀、♂)→杂交→F1→自交→F2→选出表现型符合要求的个体自交→F3→…→选出稳定遗传的个体推广种植。
c.特点:操作简单,但育种年限较长。
诱变育种:

1、概念:利用物理因素或化学因素来处理生物,使生物发生基因突变,利用这些变异培育新品种的方法叫做诱变育种。
2、原理:基因突变。
3、
4、过程:

5、优点:提高突变率,在较短时间内获得更多的优良变异类型,加快育种进程,大幅度改良某些性状。
6、缺点:盲目性大,有利变异少,需要大量处理供试材料,工作量大。
7、应用:主要应用于农作物育种和微生物育种,可以创造动植物、微生物新品种。
知识拓展:

1、作物的繁殖方式不同对杂交育种的要求不同。
①若该生物靠有性生殖繁殖后代,如小麦、大豆等,必须选育出优良性状的纯种,以免后代发生性状分离。
②若该生物靠无性生殖繁殖后代,如甘薯、马铃薯等,那么只要得到具有该优良性状的个体就可以了,因为纯种、杂种并不影响后代性状的表达。
2、原核生物不能进行减数分裂,所以不能运用杂交育种,细菌的育种一般采用诱变育种。
基因工程的应用:

1、植物基因工程:
外源基因类型及举例 成果举例
抗虫转基因植物 抗虫基因:Bt毒蛋白基因、蛋白酶抑制剂基因、淀粉酶抑制剂基因、植物凝集素基因 抗虫水稻、抗虫棉、抗虫玉米
抗病转基因植物 (1)抗病毒基因:病毒外壳蛋白基因、病毒复制酶基因(2)抗真菌基因:几丁质酶基因、抗毒素合成基因 抗病毒烟草、抗病毒小麦、抗病毒番茄、抗病毒甜椒
抗逆转基因植物 抗逆基因:调节细胞渗透压基因、抗冻蛋白基因、抗除草剂基因 抗盐碱和抗干旱的烟草、抗寒番茄、抗除草剂的大豆和玉米
改良品质的转基因植物 优良性状基因:提高必需氨基酸含量的蛋白质编码基因、控制番茄成熟的基因、与花青素代谢有关的基因 高赖氨酸玉米、耐储存番茄、新花色矮牵牛
2、动物基因工程:
外源基因类型及举例 成果举例
提高生长速度的转基因动物 外源生长激素基因 转基因绵羊、转基因鲤鱼
改善畜产品品质的转基因动物 肠乳糖酶基因 乳汁中含乳糖较少的转基因牛
生产药物的转基因动物 药用蛋白基因+乳腺蛋白基因的启动子 乳腺生物反应器
作器官移植供体的转基因动物 外源的抗原决定基因表达的调节因子或除去供体的抗原决定基因 无免疫排斥的转基因猪
3、基因诊断与基因治疗
(1)基因诊断:DNA分子杂交法(即DNA探针法),该方法是根据碱基互补配对原则,把互补的双链 DNA解开,把单链的DNA小片段用同位素、荧光分子或化学发光催化剂等进行标记,之后同被检测的DNA 中的同源互补序列杂交,从而检出所要查明的DNA或基因。
(2)基因治疗的方法:基因置换、基因修复、基因增补、基因失活等。
(3)基因治疗的途径
①体外基因治疗:先从病人体内获得某种细胞进行培养,然后在体外完成基因转移,再筛选成功转移的细胞扩增培养,最后重新输入患者体内。如腺苷酸脱氨酶基因的转移。
②体内基因治疗:用基因工程的方法,直接向人体

知识拓展:

1、Bt毒蛋白基因产生的Bt毒蛋白并无毒性,进入昆虫消化道被分解成多肽后产生毒性。
2、青霉素是谤变后的高产青霉菌产生的,不是通过基因工程改造的工程菌产生的。
3、动物基因工程的应用主要体现在提高动物生长速度、改善畜产品品质、用转基因动物生产药物等方面。 4、动物基因工程主要为了改善畜产品的品质,不是为了产生体型巨大的个体。
5、乳腺生物反应器产量高、质量好、成本低、易提取,在高价值蛋白质的生产上比工厂化生产更具有优越性二。
6、用基因工程的方法,使外源基因得以高效表达的菌类细胞株系一般称为“工程菌”。
7、基因诊断是采用基因检测的方法来判断患者是否出现了基因异常或携带病原体。基因治疗指利用正常基因置换或弥补缺陷基因的治疗方法。
8、基因工程与环境保护
亲子鉴定:利用医学、生物学和遗传学的理论和技术,从子代和亲代的形态构造或生理机能方面的相似特点,分析遗传特征,判断父母与子女之间是否是亲生关系。
使用国产制剂进行亲子鉴定
鉴定亲子关系目前用得最多的是DNA分型鉴定。人的血液、毛发、唾液、口腔细胞及骨头等都可以用于亲子鉴定,十分方便。
利用DNA进行亲子鉴定,只要作十几至几十个DNA位点作检测,如果全部一样,就可以确定亲子关系,如果有3个以上的位点不同,则可排除亲子关系,有一两个位点不同,则应考虑基因突变的可能,加做一些位点的检测进行辨别。DNA亲子鉴定,否定亲子关系的准确率几近100%,肯定亲子关系的准确率可达到99.99%。
9、基因芯片的基本原理:就是最基本的DNA分子杂交,利用基因芯片检测某种基因时,先将待测样品制成荧光标记的DNA探针,让它与基因芯片上已知序列的DNA片段杂交,杂交信号经放大后输入计算机进行统计分析,这样就可以检测出样品DNA序列。
用途:用来检测基因表达的变化、分析基因序列、寻找新的基因和新的药物分子。利用基因芯片,可以比较同一物种不同个体或物种之间,以及同一个体在不同生长发育阶段、正常和疾病状态下基因表达的差异,寻找和发现新的基因,研究基因的功能以及生物体在进化、发育、遗传等过程中的规律。
发现相似题
与“棉花的纤维有白色的,也有紫色的;棉花植株有抗虫的也有不抗...”考查相似的试题有: