返回

高中物理

首页
  • 问答题
    如图所示,两条平行光滑金属导轨,间距d=0.2m.导轨在桌面上的部分是水平的,水平部分处在磁感应强度B=0.1T、方向竖直向下的有界匀强磁场中,电阻R=3Ω,桌面高H=0.8m,金属杆ab质量m=0.2kg、电阻r=1Ω,在导轨上距桌面h=0.2m高处由静止释放金属棒ab,ab沿导轨滑下后落地点距桌面左边缘的水平距离s=0.4m,g取10m/s2,求:
    (1)金属杆刚进入磁场时,R上的电流大小和方向;
    (2)整个过程中R上放出的热量.
    魔方格

    本题信息:物理问答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “如图所示,两条平行光滑金属导轨,间距d=0.2m.导轨在桌面上的部分是水平的,水平部分处在磁感应强度B=0.1T、方向竖直向下的有界匀强磁场中,电阻R=3Ω,桌面...” 主要考查您对

平抛运动

机械能守恒定律

导体切割磁感线时的感应电动势

电磁感应现象中的磁变类问题

电磁感应现象中的切割类问题

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 平抛运动
  • 机械能守恒定律
  • 导体切割磁感线时的感应电动势
  • 电磁感应现象中的磁变类问题
  • 电磁感应现象中的切割类问题

平抛运动的定义:

将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动。


平抛运动的特性:

以抛出点为坐标原点,水平初速度V0,竖直向下的方向为y轴正方向,建立如图所示的坐标系,在该坐标系下,对任一时刻t:

①位移
分位移(水平方向),(竖直方向);
合位移(φ为合位移与x轴夹角)。
②速度
分速度(水平方向),Vy=gt(竖直方向);
合速度(θ为合速度V与x轴夹角)。
③平抛运动时间:(取决于竖直下落的高度)。
④水平射程:(取决于竖直下落的高度和初速度)。


类平抛运动:

 (1)定义当物体所受的合外力恒定且与初速度垂直时,物体做类平抛运动。
 (2)类平抛运动的分解方法
  ①常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力的方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性。
  ②特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为,,初速度分解为,然后分别在x、y方向上列方程求解。
(3)类平抛运动问题的求解思路
根据物体受力特点和运动特点判断该问题属于类平抛运动问题——求出物体运动的加速度——根据具体问题选择用常规分解法还是特殊分解法求解。
(4)类抛体运动
当物体在巨力作用下运动时,若物体的初速度不为零且与外力不在一条直线上,物体所做的运动就是类抛体运动。
在类抛体运动中可采用正交分解法处理问题,基本思路为:
 ①建立直角坐标系,将外力、初速度沿这两个方向分解。
 ②求出这两个方向上的加速度、初速度。
 ③确定这两个方向上的分运动性质,选择合适的方程求解。


机械能守恒定律:

1、内容:只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变。
2、表达式:

3.条件
机械能守恒的条件是:只有重力或弹力做功。可以从以下三个方面理解:
(1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒。
(2)受其他力,但其他力不做功,只有重力或弹力做功。例如物体沿光滑的曲面下滑,受重力、曲面的支持力的作用,但曲面的支持力不做功,物体的机械能守恒。
(3)其他力做功,但做功的代数和为零。

判定机械能守恒的方法:

 (1)条件分析法:应用系统机械能守恒的条件进行分析。分析物体或系统的受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力 (或弹力)做功,没有其他力做功或其他力做功的代数和为零,则系统的机械能守恒。
(2)能量转化分析法:从能量转化的角度进行分析:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能(如内能),则系统的机械能守恒。
(3)增减情况分析法:直接从机械能的各种形式的能量的增减情况进行分析。若系统的动能与势能均增加或均减少,则系统的机械能不守恒;若系统的动能不变,而势能发生了变化,或系统的势能不变,而动能发生了变化,则系统的机械能不守恒;若系统内各个物体的机械能均增加或均减少,则系统的机械能不守恒。
(4)对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒。

竖直平面内圆周运动与机械能守恒问题的解法:

在自然界中,违背能量守恒的过程肯定是不能够发生的,而不违背能量守恒的过程也不一定能够发生,因为一个过程的进行要受到多种因素的制约,能量守恒只是这个过程发生的一个必要条件。如在竖直平面内的变速圆周运动模型中,无支撑物的情况下,物体要到达圆周的最高点,从能量角度来看,要求物体在最低点动能不小于最高点与最低点的重力势能差值。但只满足此条件物体并不一定能沿圆弧轨道运动到圆弧最高点。因为在沿圆弧轨道运动时还需满足动力学条件:所需向心力不小于重力,由此可以推知,在物体从圆弧轨道最低点开始运动时,若在动能全部转化为重力势能时所能上升的高度满足时,物体可在轨道上速度减小到零,即动能可全部转化为重力势能;在,物体上升到圆周最高点时的速度)时,物体可做完整的圆周运动;若在时,物体将在与圆心等高的位置与圆周最高点之间某处脱离轨道,之后物体做斜上抛运动,到达最高点时速度不为零,动能不能全部转化为重力势能,物体实际上升的高度满足。故在解决这类问题时不能单从能量守恒的角度来考虑。


导体切割磁感线产生的电动势:

 


电磁感应中电路问题的解法:

电磁感应规律与闭合电路欧姆定律相结合的问题,主要涉及电路的分析与计算。解此类问题的基本思路是:
(1)找电源:哪部分电路产生了电磁感应现象,则这部分电路就是电源。
(2)由法拉第电磁感应定律求出感应电动势的大小,根据楞次定律或右手定则确定出电源的正负极。
①在外电路,电流从正极流向负极;在内电路,电流从负极流向正极。
②存在双感应电动势的问题中,要求出总的电动势。
(3)正确分析电路的结构,画出等效电路图。
①内电路:“切割”磁感线的导体和磁通量发生变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻。
②外电路:除“电源”以外的电路即外电路。
(4)运用闭合电路欧姆定律、串并联电路特点、电功率等列方程求解。


电磁感应现象中的磁变类问题:

电磁感应现象中的磁变类问题:磁场变化时会在空间激发一种电场,这种电场与静电场不同,不是由电荷产生的,叫做感生电场,由感生电场产生的电动势叫做感生电动势。
1、电磁感应中的电路问题
在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流。因此,电磁感应问题往往与电路问题联系在一起。解决与电路相联系的电磁感应问题的基本方法是:
①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
②画等效电路;
③运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解。
2、电磁感应现象中的力学问题
(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:
①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;
②求回路中电流强度;
③分析研究导体受力情况(包含安培力,用左手定则确定其方向);
④列动力学方程或平衡方程求解。
(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。
3、电磁感应中能量转化问题
导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:
①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
②画出等效电路,求出回路中电阻消耗电功率表达式;
③分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。
4、电磁感应中图像问题
电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。
另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。
电磁感应现象中的切割类问题:如果感应电动势是由导体运动而产生的,叫做动生电动势。
1、电磁感应中的电路问题
在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流。因此,电磁感应问题往往与电路问题联系在一起。解决与电路相联系的电磁感应问题的基本方法是:
①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
②画等效电路;
③运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解。
2、电磁感应现象中的力学问题
(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:
①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;
②求回路中电流强度;
③分析研究导体受力情况(包含安培力,用左手定则确定其方向);
④列动力学方程或平衡方程求解。
(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。
3、电磁感应中能量转化问题
导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:
①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
②画出等效电路,求出回路中电阻消耗电功率表达式;
③分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。
4、电磁感应中图像问题
电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。
另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。
发现相似题
与“如图所示,两条平行光滑金属导轨,间距d=0.2m.导轨在桌面上...”考查相似的试题有: