返回

高中三年级生物

首页
  • 读图填空题
    6月5日是世界环境日,今年我国的世界环境日主题是“共建生态文明,共享绿色未来”。草原是绿色生态环境的重要组成部分。某草原生态系统的食物网如下图所示。

    (1)图中食物网较简单,因此,该草原生态系统的________能力较差,其________稳定性也相应较低。除图中所示的生物类群外,该生态系统的生物组成成分还应有________才能保证其物质循环的正常进行。(2)如果图中草能提供10000kJ的能量,营养级间的能量传递效率为10%~20%,那么鹰占据的营养级能够得到的最低和最高能量值分别是________kJ和________kJ。若去除蛇,且狐的数量不变,则草原容纳鹰的数量会__________。若外来生物入侵该区,则会导致该草原的____________锐减或丧失。
    (3)影响图中兔种群数量变化的种间因素是________和竞争。若某年兔种群的K值为1000只,且1只兔和4只鼠消耗的草量相等,其他条件不变的情况下,次年鼠的数量增加400只,则兔种群的K值变为________只。用标志重捕法调查该区的种群数量时,若部分标记个体迁出,则导致调查结果________(填“偏高”或“偏低”)。
    (4)草原干旱时,兔摄取水分减少,体内细胞外液渗透压________,引起________渗透压感受器兴奋,增加抗利尿激素的释放,进而引起______________对水的重吸收增加,减少排尿量,以保持体内水平衡。
    本题信息:2011年月考题生物读图填空题难度较难 来源:马娟
  • 本题答案
    查看答案
本试题 “6月5日是世界环境日,今年我国的世界环境日主题是“共建生态文明,共享绿色未来”。草原是绿色生态环境的重要组成部分。某草原生态系统的食物网如下图所示。(1)...” 主要考查您对

水和无机盐的平衡与调节

种群数量的变化

生态系统的组成

食物链和食物网

生态系统的能量流动

生态系统的稳定性

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 水和无机盐的平衡与调节
  • 种群数量的变化
  • 生态系统的组成
  • 食物链和食物网
  • 生态系统的能量流动
  • 生态系统的稳定性
人体水盐平衡调节:

1.水盐的来源及排出
(1)来源:食物中获得水和各种无机盐。
(2)排出:通过排尿、汗液蒸发、呼气等途径排出。
2.水盐平衡调节
(1)调节机制:神经一体液调节机制。
(2)参与的激素:主要为抗利尿激素。
①产生:下丘脑产生。
②释放:垂体后叶释放。
③ 作用部位:肾小管和集合管。
④ 功能:促进肾小管和集合管对水分的重吸收
(3)调节过程
①水盐平衡调节中枢,体温调节中枢都在下丘脑,水盐平衡调节的重要激素是抗利尿激素。

②无机盐的调节:
Na+:多吃多排,少吃少排,不吃不排
K+:排泄特点:多吃多排,少吃少排,不吃也排。


易错点拨:

1、水盐平衡的调节中枢在下丘脑,但产生渴觉的部位在大脑皮层。
2、正常人每天随饮食进入人体内的水分和排出的水分大致相等。
种群数量的变化:

1.种群增长的“J”型曲线与“S”型曲线
项目 “J”型曲线 “S ”型曲线
产生条件 理想状态
①食物、空间条件充裕
②气候适宜
③没有敌害、疾病
现实状态
①食物、空间有限
②各种生态因素综合作用
特点 种群数量以一定的倍数连续增长 种群数量达到环境容纳量K值后,将在K值上下保持相对稳定
环境容纳量(K值) 无K值 有K值
曲线形成的原因 无种内斗争,缺少天敌 种内斗争加剧,天敌数量增多
种群增长率 保持稳定 先增加后减少
种群增长曲线
Nt=N0λ
种群增长(速)率曲线
联系
2、研究种群数量变化的意义:对于有害动物的防治、野生生物资源的保护和利用、以及濒临动物种群的拯救和恢复有重要意义。
预测种群密度变化趋势的方法:

1、根据年龄结构来预测种群密度的变化趋势。年龄结构是指一个种群中各年龄期的个体数目的比例。
类型 图示 种群特征 出生率 种群密度
增长型 幼年个体数多于成年、老年个体数 出生率>死亡率 增大
稳定型 各年龄期个体数比例适中 出生率≈死亡率 稳定
衰退型 幼年个体数少于成年、老年个体数 出生率<死亡率 减少
2、根据性别比例来预测种群密度的变化趋势。
(1)种群的性别比例是指种群中雌雄个体数目的比例。

(2)性别比例影响种群密度的原因
性别比例 繁殖机会 出生率 种群密度
各年龄阶段中雌雄个体数量相当 雌雄个体都有充分交配繁殖机会 决定了较高的出生率 将逐渐增大
雌多于雄或雄多于雌的种群,性别比例失调 个体间交配繁殖机会较少 出生率较低 将逐渐减小

种群数量增长与种群增长(速)率:

1、增长速率与种群数量不是一个概念,只要增长速率为正值,种群数量就在增加;增长速率为零,种群数量恒定不变;增长速率为负值时,种群数量应下降。
2、种群的“J”型增长和“S”型增长
项目 “S”型曲线 “J”型曲线
种群数量增长曲线
种群增长(速)率曲线

知识点拨:

1、“S”型曲线中注意点:
①K值为环境容纳量(在环境条件不受破坏的情况下,一定空间中所能维持的种群最大数量);
②K/2处增长率最大。
③大多数种群的数量总是在波动中,在不利的条件下,种群的数量会急剧下降甚至消失。
2、实例:
灭鼠 捕鱼
K/2(有最大增长速率) 捕捞后,防止灭鼠后,鼠的种群数量在K/2附近,这样鼠的种群数量会迅速增加,无法达到灭鼠效果 捕捞后使鱼的种群数量维持在K/2,鱼的种群数量将迅速回升
K(环境最大容纳量) 降低K值,改变环境,使之不适合鼠生存 保护K值,保证鱼生存的环境条件,尽量提升K值
3、种群数量变化包括增长、波动、稳定、下降等,而“J”型曲线和“S”型曲线都知识研究了种群数量增长的规律。
4、 “J”型曲线反映的种群增长率是一定的;而“S”型曲线所反映的种群增长率是先增大后减小。不能认为“S”型曲线的开始部分是“J”型曲线。
知识拓展:

1、种群数量的波动和下降
(1)种群数量是由出生率和死亡率、迁入率和迁出率决定的。
 
(2)原因:气候、食物、天敌、传染病、空间、人类影响等多种生态因素共同作用的结果。因此,大多数种群的数量总是在波动中。

生态系统的组成:

1.生态系统的概念与内涵
(1)概念:生态系统是由生物群落与其无机环境相互作用而形成的统一整体。

2.生态系统的成分

成分 归类 各成分的组成 在生态系统中的作用 地位
非生物的物质和能量 无机物、有机物、气候、能源 生物群落中的物质和能星的根本来源 必需成分
生产者 自养生物 (1)绿色植物(2)光合细菌和蓝藻(3)化能合成细菌,如铁细菌 将无机环境中的物质和能量通过光合作用引入生物群落,为消费者、分解者提供物质和能量 基石
消费者 异养生物 (1)绝大多数动物(2)寄生生物 帮助生产者传粉、传播种子等 最活跃的成分
分解者 异养生物 (l)腐生细菌和真菌(2)腐食动物,如蚯蚓、蜣螂等 把动植物遗体、排出物和残落物中的有机物分解成简单的无机物 循环的关键成分
3生态系统各类成分关系


易错点拨:

1、细菌并不都是分解者,如硝化细菌是自养型生物,属于生产者;寄生细菌属子特殊的消费者。
2、动物并不都是消费者,如蜣螂、蚯蚓、某些原生动物等以植物残体、粪便为食的腐食动物属于分解者。
3、生产者并不都是绿色植物,如蓝藻、硝化细菌等原核生物也是生产者,应该说生产者包括绿色植物。
4、植物并不都是生产者,如菟丝子营寄生生活,属于消费者。


知识拓展:

生态系统各成分的判断:

 1.根据双向箭头AD确定两者肯定是非生物的物质和能量、生产者;
2.根据箭头指向判断各成分
(1)A有三个指出,应为生产者;
(2)D有三个指入,为非生物的物质和能量;
(3)B和C一个为消费者,另一个为分解者,A(生产者)和B均指向C,则C为分解者。
食物链和食物网:

1.食物链
(l)概念:生态系统中各种生物之间南于食物而形成的一种关系(通常指捕食链)。
(2)示例分析
食物链 草→昆虫→慵蜍→蛇→猫头鹰
成分 生产者 初级消费者 次级消费者 三级消费者 四级消费者
营养级别 第一营养级 第二营养级 第三营养级 第四营养级 第五营养级
成分类型 主要是绿色植物 植食动物 小型肉食动物 中型肉食动物 大型肉食动物
代谢类型 自养 异养 异养 异养 异养
重要意义 生态系统的物质循环、能量流动沿此渠道进行
(3)特点
①生产者为第一营养级。
②消费者所处营养级不固定,一般不会超过5个营养级。
2.食物网
(1)概念:在一个生态系统中,许多食物链彼此相互交错连接成的复杂营养结构。
(2)形成的原因:多种生物在食物链中占有不同的营养级。
(3)意义:生态系统的物质和能量就是顺着食物链和食物网渠道流动的。

知识点拨:

食物网中生物数量变化的分析与判断
1.第一营养级的生物减少对其他物种的影响第一营养级的生物(生产者)减少时,将会连锁性地引发其后的各个营养级生物减少。这是因为生产者是其他各种生物赖以生存的直接或间接的食物来源。
2.“天敌”一方减少,对被捕食者数量变化的影响一条食物链中处于“天敌”地位的生物数量减少,则被捕食者数量变化是先增加后减少,最后趋于稳定。
3.复杂食物网中某种群数量变化引起的连锁反应分析
(1)以中间环节少的作为分析依据,考虑方向和顺序为:从高营养级依次到低营养级。
(2)主产者相对稳定,即生产者比消费者稳定得多,所以当某一种群数量发生变化时,一般不需考虑生产者数量的增加或减少。
(3)处于最高营养级的种群且有多种食物来源时,若其中一条食物链中断,则该种群可通过多食其他食物而维持其数量基本不变。
4.同时占有两个营养级的种群数量变化的连锁反应分析食物链中某一种群的数量变化,导致另一种群的营养级连锁性发生变化,因为能量在食物链(网)中流动时只有10%~20%流到下一个营养级,且能量流动的环节越多,损耗越多,所以该类连锁变化的规律是:当a种群的数量变化导致b种群的营养级降低时,则b 种群的数量将增加;若导致b种群的营养级升高时,则 b种群的数量将减少。
生态系统的能量流动:

1、概念生物系统中能量的输入、传递、转化和散失的过程,输入生态系统总能量是生产者固定的太阳能,传递沿食物链、食物网,散失通过呼吸作用以热能形式散失的。
2、过程:
(1)能量的输入

③输入生态系统的总能量:生产者固定的太阳能总量。
(2)能量的传递
①传递途径:食物链和食物网。
②传递形式:有机物中的化学能。
③传递过程:

(3)能量的转化

(4)能量的散失
①形式:热能,热能是能量流动的最后形式。


3、能量流动的特点
(1)单向流动
①食物链中,相邻营养级生物的捕食关系不可逆转,因此能量不能倒流,这是长期自然选择的结果。
②各营养级的能量总有一部分通过细胞呼吸以热能的形式散失,这些能量是无法再利用的。
(2)逐级递减
①每个营养级的生物总有一部分能量不能被下一营养级利用。
②各个营养级的生物都会因细胞呼吸消耗相当大的一部分能量,供自身利用和一热能形式散失。
③各营养级中的能量都要有一部分流入分解者。
4、能量传递效率能量在相邻两个营养级间的传递效率一般为10﹪~20﹪,即输入某一营养级的能量中,只有10﹪~20﹪的能量流到下一营养级。
计算方法为:

4、研究能量流动的意义:
(1)实现对能量的多级利用,提高能量的利用效率(如桑基鱼塘)
(2)合理地调整能量流动关系,使能量持续高效的流向对人类最有益的部分(如农作物除草、灭虫)

生态系统中能量流动的计算:

在解决有关能量传递的计算问题时,首先要确定相关的食物链,理清生物在营养级上的差别,能量传递效率为10%-20%,解题时注意题目中是否有“最多” “最少…至少”等特殊的字眼,从而碗定使用l0%或 20%来解题。
1.设食物链A→B→C→D,分情况讨论如下:
已知D营养级的能量为M,则至少需要A营养级的能量=M÷(20%)3;最多需要A营养级的能量 =M÷(10%)3
已知A营养级的能量为N,则D营养级获得的最多能量=N×(20%)3;D营养级获得的最少能量=N× (l0%)3。 2.如果是在食物网中,同一营养级同时从上一营养级多种生物获得能量,则按照各单独的食物链进行诗算后合并。
3.在食物网中分析如A→B→C→D确定生物量变 化的“最多”或“最少”时,还应遵循以下原则:
(1)食物链越短,最高营养级获得的能量越多;
(2)生物间的取食关系越简单,生态系统消耗的能量就越少,如已知D营养级的能量为M,计算至少需要 A营养级的能量时,应取最短食物链A→D,并以20% 的效率进行传递,即等于M÷20%;计算最多需要A营养级的能量时,应取最长的食物链A→B→C→D,并以 10%的效率进行传递,即等于M÷(10%)3
4.已知较低营养级生物的能量求解较高营养级生物的能量时,若求解“最多”值,则说明较低营养级的能量按“最高”效率传递;若求解“最(至)少”值,则说明较低营养级生物的能量按“最低”效率传递。具体规律如下:

表解生态系统三种金字塔的不同:

项目\类型 能量金字塔 数量金宇塔 生物量金字塔
形状
特点 正金字塔 一般呈正金字塔,有时呈倒金字塔 一般为正金字塔
象征含义 能量沿食物链流动过程中具有逐级递减的特性 生物个体数目在食物链中随营养级升高而逐级递减 生物量(现存生物有机物的总量)沿食物链流动逐级递减
每一阶含义 食物链中每一营养级生物所含能量的多少 每一营养级生物个体的数目 每一营养级生物的总生物量
异常分析 人工鱼塘中的生产者并不多,需要人工给鱼施加有机饲料,如图
成千上万只昆虫生活在一棵大树上时,该数量金字塔的塔形会发生变化,如图
浮游植物的个体小,寿命短,又不断被浮游动物吃掉,所以某一时间浮游植物的生物量会低于浮游动物,如图

易错点拨:

1、图解中的箭头由粗到细表示流如下一营养级的能量逐级递减;方块面积越来越小表示营养级的升高,储存在生物体内的能量越来越少。
2、每一营养级的能量来源及去向流入一个营养级的能量石指被这个营养级的生物所同化的全部能量。营养级的能量的来源与去路如下:
 
3、消费者产生的粪便不属于该营养级同化的能量,它属于上一营养级未被利用的部分。
4、动物同化的能量并不等于摄入的能量:动物同化的能量=动物摄入的能量-动物粪便中的能量。

知识拓展:

1、由于能量传递效率为10﹪~20﹪,传到第五营养级时,能量已经很少了,再往下传递不足以维持一个营养级,所以一条食物链中营养级一般不超过5个。
2、食物网中,能量传递效率是指某营养级流向各食物链下一营养级的总能量占该营养级比例。
如: 是指流向B、C的总能量占A的10﹪~20﹪。
3、根据能量流动的递减性原则,在建立与人类相关的食物链时,应尽量缩短食物链。
生态系统的稳定性:

1.生态系统稳定性的概念
生态系统所具有的保持或恢复自身结构和功能相对稳定的能力称为生态系统的稳定性。 2.生态系统稳定性的种类
(1)抵抗力稳定性
①概念:生态系统抵抗外界干扰并使自身的结构和功能保持原状的能力。
②原因:生态系统内部具有一定的自我调节能力。
③规律:生态系统的成分越单纯,营养结构越简单,自我调节能力就越弱,抵抗力稳定性就越低,反之则越高。
(2)恢复力稳定性
①概念:生态系统在受到外界干扰因素的破坏后恢复到原状的能力。
②规律:一般环境条件越好,恢复力稳定性越高;反之,越低。
3.提高生态系统稳定性的措施
(1)控制对生态系统干扰的程度。
(2)实施相应的物质、能量投入,保证生态系统内部结构与功能的协调。
生态系统自我调节能力辨析:

1.实例
(1)河流:

(2)森林:

 2.基础:负反馈调节,在生态系统中普遍存在,
3.特点:生态系统的自我调节能力是有限的,当外界干扰因素的强度超过一定限度时,生态系统的自我调节能力迅速丧失,生态系统难以恢复。
抵抗力稳定性和恢复力稳定性的区别和联系:

抵抗力稳定性 恢复力稳定性
区别 实质 保持自身结构功能相对稳定 恢复自身结构功能相对稳定
核心 抵抗干扰,保持原状 遭到破坏,恢复原状
影响因素 生态系统中物种丰富度越大,营养结构越复杂,抵抗力稳定性越强 生态系统中物种丰富度越小,营养结构越简单,恢复力稳定性越强
二者联系 ①相反关系:抵抗力稳定性强的生恋系统,恢复力稳定性弱,反之亦然;②二者是同时存在于同一系统中的两种截然不同的作用力,它们相互作用共同维持生态系统的稳定。如图所示:
2.生态系统抵抗力稳定性、恢复力稳定性和总稳定性的关系

易错点拨:

1、对于极地苔原(冻原),由于物种组分单一、结构简单,它的抵抗力稳定性和恢复力稳定性都较低。
2、生态系统抵抗力稳定性与自我调节能力的大小的关系
 
知识拓展:

1、不同的生态系统在两种稳定性的表现上有差别,生态系统中的组分越多,食物网越复杂,其自我调节的能力就越强,抵抗力稳定性就越高。
2、不同的生态系统在受到不同干扰(破坏)后,其恢复速度与恢复时间不同。
3、生态系统自我调节能力的大小
生态系统成分 食物网 自我调节能力
越少 越简单
越多 越复杂
4、反馈调节的种类
比较项目 正反馈 负反馈
调节方式 加速最初发生变化的那种成分所发生的变化 抑制和减弱最初发生变化的那种成分所发生的变化
结果 常使生态系统远离稳态 有利于生态系统保持相对稳定
实例分析

发现相似题
与“6月5日是世界环境日,今年我国的世界环境日主题是“共建生态文...”考查相似的试题有: