返回

高中物理

首页
  • 单选题
    如图所示,长为s的光滑水平面左端为竖直墙壁,右端与半径为R光滑圆弧轨道相切于B点.一质量为m的小球从圆弧轨道上离水平面高为h(h«R)的A点由静止下滑,运动到C点与墙壁发生碰撞,碰撞过程无机械能损失,最终小球又返回A点;之后这一过程循环往复地进行下去,则小球运动的周期为(  )
    A.π
    R
    g
    +s
    2
    gh
    B.
    R
    g
    +s
    2
    gh
    C.π
    R
    g
    +
    s
    本题信息:2011年丰台区一模物理单选题难度一般 来源:未知
  • 本题答案
    查看答案
  • 本试题 “如图所示,长为s的光滑水平面左端为竖直墙壁,右端与半径为R光滑圆弧轨道相切于B点.一质量为m的小球从圆弧轨道上离水平面高为h(h«R)的A点由静止下滑,运动...” 主要考查您对

    匀速直线运动

    机械能守恒定律

    单摆的周期

    等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
    • 匀速直线运动
    • 机械能守恒定律
    • 单摆的周期

    定义:
    在任意相等的时间内位移相等的直线运动叫做匀速直线运动。

    特点:
    加速度a=0,速度v=恒量。

    位移公式:
    S=vt。


    知识点拨:

    1. 匀变速直线运动是在相等时间内速度变化相等的直线运动。注意在此定义中所涉及的“相等时间内”应理解为任意相等的时间内,而非一些特定相等的时间内。
    2. 做匀速直线运动的物体在任意相同时间内通过的路程都相等,即路程与时间成正比;速度大小不随路程和时间变化;位移与路程的大小相等。
    3. 匀速直线运动是理想状态与实际的结合。匀速直线运动不常见,因为物体做匀速直线运动的条件是不受外力或者所受的外力和为零,但是我们可以把一些运动近似地看成是匀速直线运动。如:滑冰运动员停止用力后的一段滑行、站在商场自动扶梯上的顾客的运动等等。我们可用公式v=s/t求得他们的运动速度。式中,s为位移,v为速度且为恒矢量,t为发生位移s所用的时间。由公式可以看出,位移是时间的正比例函数:位移与时间成正比。
    4. 当物体处于匀速直线运动时,物体受力平衡。
    5. 做匀速直线运动的物体其速度是保持不变的,因此,如果知道了某一时刻(或某一距离)的运动速度,就知道了它在任意时间段内或任意运动点上的速度。

                                 


    机械能守恒定律:

    1、内容:只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变。
    2、表达式:

    3.条件
    机械能守恒的条件是:只有重力或弹力做功。可以从以下三个方面理解:
    (1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒。
    (2)受其他力,但其他力不做功,只有重力或弹力做功。例如物体沿光滑的曲面下滑,受重力、曲面的支持力的作用,但曲面的支持力不做功,物体的机械能守恒。
    (3)其他力做功,但做功的代数和为零。

    判定机械能守恒的方法:

     (1)条件分析法:应用系统机械能守恒的条件进行分析。分析物体或系统的受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力 (或弹力)做功,没有其他力做功或其他力做功的代数和为零,则系统的机械能守恒。
    (2)能量转化分析法:从能量转化的角度进行分析:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能(如内能),则系统的机械能守恒。
    (3)增减情况分析法:直接从机械能的各种形式的能量的增减情况进行分析。若系统的动能与势能均增加或均减少,则系统的机械能不守恒;若系统的动能不变,而势能发生了变化,或系统的势能不变,而动能发生了变化,则系统的机械能不守恒;若系统内各个物体的机械能均增加或均减少,则系统的机械能不守恒。
    (4)对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒。

    竖直平面内圆周运动与机械能守恒问题的解法:

    在自然界中,违背能量守恒的过程肯定是不能够发生的,而不违背能量守恒的过程也不一定能够发生,因为一个过程的进行要受到多种因素的制约,能量守恒只是这个过程发生的一个必要条件。如在竖直平面内的变速圆周运动模型中,无支撑物的情况下,物体要到达圆周的最高点,从能量角度来看,要求物体在最低点动能不小于最高点与最低点的重力势能差值。但只满足此条件物体并不一定能沿圆弧轨道运动到圆弧最高点。因为在沿圆弧轨道运动时还需满足动力学条件:所需向心力不小于重力,由此可以推知,在物体从圆弧轨道最低点开始运动时,若在动能全部转化为重力势能时所能上升的高度满足时,物体可在轨道上速度减小到零,即动能可全部转化为重力势能;在,物体上升到圆周最高点时的速度)时,物体可做完整的圆周运动;若在时,物体将在与圆心等高的位置与圆周最高点之间某处脱离轨道,之后物体做斜上抛运动,到达最高点时速度不为零,动能不能全部转化为重力势能,物体实际上升的高度满足。故在解决这类问题时不能单从能量守恒的角度来考虑。


    单摆:

    1.定义:用一根不可伸长且没有质量的细线悬挂一质点所组成的装置,叫做单摆,它是实际摆的理想化模型
    2.模型条件:
    (1)摆线的形变量与摆线长度相比小得多,摆线的质量与摆球质量相比小得多,这时可把摆线看成是不可伸长,且没有质量的细线。
    (2)摆球的大小与摆线长度相比小得多,这时可把摆球看成是没有大小只有质量的质点。
    (3)忽略空气对它的阻力。某一物理量是否可以略去不计,是相对而言的。为了满足上述条件及尽量减小空气阻力对它的影响,我们组成单摆的摆球应选择质量大而体积小的球,摆线应尽量选择细而轻目弹性小的线
    3.平衡位置:摆球静止时所处的位置即最低点
    4.简谐运动条件:
    5.单摆的周期公式:(可由推导)。
    ①在振幅很小的条件下,单摆的振动周期跟振幅无关;
    ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关;
    ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。

    单摆问题中的等效处理方法:

    单摆的周期公式是惠更斯从实验中总结出来的。单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力,偏角越大回复力越大,加速度 ()越大。由于摆球的轨迹是圆弧,所以除最高点外,摆球的回复力并不等于合外力。在有些振动系统中l不一定是绳长,g也不一定为9.8m/s2,因此出现了等效摆长和等效重力加速度的问题。
    1.等效摆长
    摆长是指摆动圆弧的圆心到撰球重心的距离,而不一定为摆绳的长。如图中,摆球可视为质点,各段绳长均为Z,甲、乙摆球做垂直纸面的小角度摆动,丙摆球在纸面内做小角度摆动,O'为垂直纸面的钉子,而且

    甲:等效摆长
    乙:等效摆长
    丙:摆绳摆到竖直位置时,圆弧圆心就由O变为O',摆球振动时,半个周期摆长为l,另半个周期摆长为,则单摆丙的周期为
    2.等效重力加速度不一定等于9.8
    (1)g由单摆所在的空间位置决定。g随所在地球表面的位置和高度的变化而变化,纬度越低,高度越高,g的值就越小,另外,在不同星球上管也不同。
    (2)g还由单摆系统的运动状态决定,如单摆处在向上加速的升降机中,设加速度为a,则摆球处于超重状态,沿圆弧的切向分力变大,则重力加速度的等效值若升降机加速下降,则单摆若在沿轨道运行的卫星内,摆球完全失重,回复力为零,等效值,摆球不摆动,周期无穷大。
    (3)一般情况下,值等于摆球相对于加速系统静止在平衡位置时(平衡位置是指回复力为零的位置,而不是合力为零的位置,也可以说成是让摆球不摆时的位置)重力加速度的等效值,等于摆绳所受的张力与摆球质量的比值即
    但需注意如果在不引起回复力变化的情况,上述方法并不适用,如摆球带电,再在悬点处固定一带电小球,两球之间的静电力不引起回复力的变化,单摆振动周期并不变。


    发现相似题
    与“如图所示,长为s的光滑水平面左端为竖直墙壁,右端与半径为R...”考查相似的试题有: