返回

初中化学

首页
  • 单选题
    下列说法正确的是(  )
    A.物质发生缓慢氧化时一定放出热量
    B.原子中一定含有中子
    C.燃烧一定是化合反应
    D.稀有气体元素的原子最外层电子数都是8

    本题信息:化学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “下列说法正确的是( )A.物质发生缓慢氧化时一定放出热量B.原子中一定含有中子C.燃烧一定是化合反应D.稀有气体元素的原子最外层电子数都是8” 主要考查您对

化合反应

化学反应中的能量变化

爆炸、自燃

原子结构

原子的定义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 化合反应
  • 化学反应中的能量变化
  • 爆炸、自燃
  • 原子结构
  • 原子的定义
概念:指的是由两种或两种以上的物质生成一种新物质的反应。其中部分反应为氧化还原反应,部分为非氧化还原反应。 此外,化合反应一般释放出能量。

注意:
不是所有的化合反应都是放热反应。

特征:多变一

表达式:
a+b=ab

初中常见化合反应:
1.金属+氧气→金属氧化物
很多金属都能跟氧气直接化合。例如常见的金属铝接触空气,它的表面便能立即生成一层致密的氧化膜,可阻止内层铝继续被氧化。4Al+3O2=2Al2O3

2.非金属+氧气→非金属氧化物 经点燃,许多非金属都能在氧气里燃烧,如:C+O2CO2

3.金属+非金属→无氧酸盐 许多金属能与非金属氯、硫等直接化合成无氧酸盐。如 2Na+Cl22NaCl

4.氢气+非金属→气态氢化物  因氢气性质比较稳定,反应一般需在点燃或加热条件下进行。如 2H2+O22H2O

5.碱性氧化物+水→碱.  多数碱性氧化物不能跟水直接化合。判断某种碱性氧化物能否跟水直接化合,一般的方法是看对应碱的溶解性,对应的碱是可溶的或微溶的,则该碱性氧化物能与水直接化合。如: Na2O+H2O=2NaOH. 对应的碱是难溶的,则该碱性氧化物不能跟水直接化合。如CuO、Fe2O3都不能跟水直接化合。

6.酸性氧化物+水→含氧酸.  除SiO2外,大多数酸性氧化物能与水直接化合成含氧酸。如: CO2+H2O=H2CO3

7.碱性氧化物+酸性氧化物→含氧酸盐 Na2O+CO2=Na2CO3。大多数碱性氧化物和酸性氧化物可以进行这一反应。其碱性氧化物对应的碱碱性越强,酸性氧化物对应的酸酸性越强,反应越易进行。 

8.氨+氯化氢→氯化铵 氨气易与氯化氢化合成氯化铵。如: NH3+HCl=NH4Cl

9.硫和氧气在点燃的情况下形成二氧化硫  S+O2SO2

10.特殊化合反应
公式 A+B+…+N→X(有些化合反应属于燃烧反应)
例如:铁+氧气四氧化三铁 3Fe+2O2Fe3O4
定义:
      化学反应不仅有物质的变化,还伴随着能量的变化,通常表现为热量变化。有些化学反应会放出热量(称为放热反应),如燃烧、镁和盐酸反应等;也有些反应会吸收热量(称为吸热反应),如碳与二氧化碳反应(C+CO22CO)。

常见的吸热反应:
化学上把最终表现为吸收热量的反应叫吸热反应,初中化学所涉及的吸热反应主要有以下几种:
①C+CO22CO
C+2CuO2Cu+CO2
CaCO3CaO+CO2
3CO+Fe2O32Fe+3CO2
可见,一般反应条件为高温的反应是吸热反应。

常见的放热反应:
化学上把最终表现为放出热量的反应叫放热反应,初中化学所涉及的放热反应主要有以下几种:
①燃烧:所有燃烧均会放热,如CH4+2O2CO2+2H2O,H2+Cl22HCl;
②酸碱中和:酸与碱反应生成盐和水,同时放出热量,如H2SO4+2NaOH==Na2SO4+2H2O
③活拨金属与酸发生置换反应生成H2,同时放出热量,如Mg+2HCl==MgCl2+H2↑,Zn+H2SO4== ZnSO4+H2↑。
④缓慢氧化也是放热反应,如铁生锈、食物腐烂过程中均放出热量。
⑤其他:如双氧水分解是放热反应

人类生活对能量的利用:
①生活燃料的利用:做饭、取暖等;

②利用燃料烧烧产生的能量:发电、制陶瓷、冶炼金属和发射火箭;

③利用爆炸产生的巨大能量:开山炸石、拆除违规建筑;

④食物在体内发生缓慢氧化放出热量,维持体温

自燃:
1. 概念:自燃是由缓慢氧化引起的自发燃烧。如果缓慢氧化产生的热量不能及时散失,就会越积越多,当温度升高到可燃物的着火点时,如果再遇到氧气就会引起自发的燃烧,这就是自燃。
爆炸:
1. 概念:通常说的爆炸指可燃物拒有限空间内急速燃烧,短时间内聚积大量的热量,使气体体积迅速膨胀引起的爆炸。

自燃:
    露在地表的煤层,由于气候炎热,发生缓慢氧化反应而导致自燃。
贮存棉花、饲草的仓库,沾满机器油的破布、棉丝等堆积时间长了,通风不好有时就会自燃。在干燥的季节,森林也会自燃。
在坟地里出现“磷火”也是一种自燃现象。
人和动物机体里含磷的有机物腐败分解能生成磷化氢气体。这种气体着火点很低,接触空气就会自燃。在缺乏科学知识的时代,常把这种自燃现象说成是“鬼火”。
平时将白磷浸泡在冷水里,防止自燃。白磷的着火点低(40℃),可用它做自燃实验。取出少许白磷溶解在二硫化碳中,然后把溶液倒在滤纸上,待二硫化碳挥发后,白磷在滤纸上与空气中氧气充分接触就会自燃。

爆炸:
     爆炸是我们日常生活中常见的观象,但有的爆炸仅仅是由物理变化引起的,如轮胎爆炸;有螳爆炸则是由化学变化引起的,如火药爆炸,汽油、液化气等燃料的爆炸等。其中,由化学变化引起的爆炸是学习的重点,这种类型的爆炸主要是由于:
①在有限的空间 (如炸弹)内,发生急速的燃烧,短时问聚积大量的热,使气体的体积迅速膨胀;
②氧气的浓度高,或者可燃物 (气体、粉尘)与氧气的接触面积很大,燃烧范围广,周围的空气迅速猛烈膨胀。防止这类爆炸的方法:通风,禁止烟火等。

燃烧,缓慢氧化,自燃,爆炸(由化学变化引起)的比较:

燃烧 缓慢氧化 自燃 爆炸
概念 可燃物与氧气发生的一种发光放热的剧烈的氧化反应 缓慢进行的氧化反应 由缓慢氧化引起的自发燃烧 可燃物在有限空间内发生的急速燃烧
能量变化 放热明显 放出热量随时散失 放热明显 放热明显
温度 达到可燃物的着火点 未达到可燃物的着火点 达到可燃物的着火点 达到可燃物的着火点
是否发光 发光 无明显发光现象 发光 发光
联系 均属于氧化反应,均放出热量

易燃易爆物的安全知识:
(1)易燃物:一般来说,易燃物指的是那些易燃的气体和液体,容易燃烧、自燃或遇水可以燃烧的固体,以及一些可以引起其他物质燃烧的物质等。常见的有硫;磷、酒精,液化石油气、氢气、乙炔、沼气、石油产品、面粉、棉絮等。

(2)易爆物:指的是那受热或受到撞击时.容易发生爆炸的物质。

(3)一些与燃烧和爆炸有关的图标:

(4)再生产、运输、使用、储存易燃、易爆物时的注意事项:
①对厂房和仓库的要求:与周围建筑物间有足够的防火距离。车间,仓库要有防火、防爆、通风、静电除尘、消防等器材设备,严禁烟火,杜绝一切可能产生火花的因素。容器要求:要牢固、密封、警示标志明显且要注明物品名称、化学性质、注意事项。
③存放要求:单存、单放、远离火种:注意通风。
④运输要求:轻拿轻放、勿撞击。
⑤工作人员要求:严禁烟火、人走电断。

火灾自救及逃生策略:

(1)可燃性气体泄漏时的注意事项当室内天然气、液化石油气、煤气泄漏后室内充满可燃性气体.在此环境中打电话或打开换气扇开关,可能产生电火花,造成爆炸、所以应先关闭总阀、开窗通风,并在杜绝一切明火的同时,查找泄露的原因。

(2)火灾自救策略
①迅速找到安全通道;
②火灾时上层空气中氧气少,毒气浓度大,所以要匍匐前进:
③房间发生火灾时不能随时开门开窗,开门开窗会增加氧气量,使火势更加凶猛;
④火灾时,会产生大量浓烟,使人窒息,因此最好用湿布捂住口鼻;
⑤在山林中遇到火灾时,应逆风而跑,因为顺着风更容易被烧伤或发生危险。

爆炸极限:
(1)概念:可燃性气体在空气中达到一定浓度时,遇到明火会发生爆炸,人们把容易导致爆炸的空气中可燃性气体的体积分数范围,称为该气体的爆炸极限。
①当可燃性气体在混合气体中的含量高于爆炸极限的上限时,可燃性气体可以安静地燃烧;而低于爆炸极限的下限时,则无法燃烧。
②我们通常所说额可燃性气体检验纯度,其实就是检验可燃性气体有没有达到爆炸极限,只要超过爆炸极限的上限,可燃性气体就可以安静的燃烧。

(2)几种常见物质的爆炸极限
可燃物 爆炸极限
甲烷 5%-15%
丙烷 2.2%-9.5%
乙醇 3.4%-19%
氢气 4.0%-75%
一氧化碳 12.5%-74%
液化气 2.0%-12%
水煤气 7.0%-72%

粉尘爆炸实验:
(1)实验装置及步骤
下面是模拟粉尘爆炸的一个实验:如下图所示,在无盖小塑料筒里放入干燥面粉,点燃蜡烛,用塑料盖盖住金属筒,迅速鼓入大量空气,不久,便会听到“砰”的一声,爆炸的气浪将金属筒的塑料盖掀起。


(2)现象:砰的一声响,伴随着一团火光产生,放热,塑料盖被掀起。

(3)分析:面粉被吹起,与空气充分接触,又被蜡烛点燃,在有限空间内发生急剧地燃烧,并让出大量热,产生的气浪将塑料盖掀起,说明可燃物的粉尘在有限的空间内急剧燃烧,能发生爆炸。

原子的构成:


原子核的构成:

原子核相对原子来说,体积很小,但质量却很大,原子的质量主要集中在原子核上,电子的质量约为质子质量的
质子的质量为:1.6726×10-27kg
中子的质量为:1.6749×10-27kg



构成原子的粒子间的关系:

对原子构成的正确理解:
(1)原子核位于原子中心,绝大多数由质子和中构成 (有一种氢原子的原子核内只含有1个质子,无中子),体积极小,密度极大,几乎集中了原子的全部质量,核外电子质量很小,可以忽略不计。
(2)每个原子只有一个原子核,核电荷数(核内质子数)的多少,决定了原了的种类。
(3)在原子中:核电荷数二质子数二核外电子数。
(4)原子核内的质子数不一定等干中子数,如钠原子中,质子数为11,中子数为12。
(5)并不是所有的原子中都有中子,如有一种氢原子中就没有中子。
(6)在原子中,由于质子(原子核)与电子所带电荷数相等,且电性相反,因而原子中虽然存在带电的粒子,但原子在整体上不显电性。

核外电子的排布:
①电子层核外电子运动有自己的特点,在含有多个电子的原子里,有的电子通常在离核较近的区域运动,有的电子通常在离核较远的区域运动,科学家形象地将这些区域称为电子层。

②核外电子的分层排布通常用电子层来形象地表示运动着的电子离核远近的不同:离核越近,电子能量越低;离核越远,电子能量越高。电子层数、离核远近、能量高低的关系如下所示:
电子层数 1 2 3 4 5 6 7
离核远近 近→        远
能量高低 低→        高

③核外电子排布的规律了解一些核外电子排布的简单规律对理解原子核外电子排布的情况有很重要的作川,核外电子排布的简单规律主要有:
a.每层上的电子数最多不超过2n2(n为电子层数),如第一电子层上的电子数可能为1,也可能为2,但最多为2。
b.核外电子排布时先排第一层,排满第一层后,再排第二层,依次类推。
c.最外层上的电子数不超过8;当只有一个电子层时,最外层上的电子数不超过2。

原子的不可再分与原子的结构:
化学变化中原子不会由一种原子变成另外一种原子,即化学变化中原了的种类不变,其原因是化学变化中原子核没有发生变化。如硫燃烧生成了二氧化硫,硫和氧气中分别含有硫原子和氧原子,反应后生成的二氧化硫中仍然含硫原子和氧原子。原子不是最小粒子,只是在化学变化的范围内为“最小粒子”,它还可再分,如原子弹爆炸时的核裂变,就是原子发生了变化。原子尽管很小,但具有一定的构成,是由居于原子中心的带正电的原子核和核外带负电的电子构成的。
原子结构示意图:

由原子构成的物质:
绝大多数的单质是由原子构成的,如金属单质、稀有气体均是由原子直接构成的,碳、硫、磷等大多数的非金属单质也是由原子直接构成的。 

原子的定义:
原子是化学变化中最小的粒子。例如,化学变化中,发生变化的是分子,原子的种类和数目都未发生变化。
对原子的概念可从以下三个方面理解:
①原子是构成物质的基本粒子之一。
②原了也可以保持物质的化学性质,如由原子直接构成的物质的化学性质就由原子保持。
③原子在化学变化中不能再分,是“化学变化中最小的粒子”,脱离化学变化这一条件,原子仍可再分。

原子的性质:
①原子的质量、体积都很小;
②原子在不停地运动;
③原子之间有一定的间隔;
④原子可以构成分子,如一个氧分子是由两个氧原子构成的;也可以直接构成物质,如稀有气体、铁、汞等都是由原子直接构成的;
⑤化学反应中原子不可再分。

原子的表示方法—元素符号:
原子可用元索符号表示:如O既可表示氧元素,也可表示1个氧原子。

分子和原子的联系与区别:
项目 分子 原子
不同点 本质区别 在化学反应中可以分成原子 在化学反应中不能再分
构成物质情况 大多数物质由分子构成 原子也能直接构成物质,但分子是由原子构成的
相同点 ①质量和体积都很小
②都在不停地运动
③粒子间有间隔
④都是构成物质的粒子
⑤同种粒子性质相同,不同种粒子性质不同
注意事项 ①分子是保持物质化学性质的最小粒子
②原子是化学变化中的最小粒子
③分子是由原子构成的
④对于由原子直接构成的物质,原子是保持其化学性质的最小粒子
联系 分子是由原子构成的,分子,原子都是构成物质的粒子,它们的关系是

道尔顿的原子模型:
英国自然科学家约翰·道尔顿将古希腊思辨的原子论改造成定量的化学理论,提出了世界上第一个原子的理论模型。他的理论主要有以下四点:
①所有物质都是由非常微小的、不可再分的物质微粒即原子组成

②同种元素的原子的各种性质和质量都相同,不同元素的原子,主要表现为质量的不同

③原子是微小的、不可再分的实心球体

④原子是参加化学变化的最小单位,在化学反应中,原子仅仅是重新排列,而不会被创造或者消失。 虽然,经过后人证实,这是一个失败的理论模型,但道尔顿第一次将原子从哲学带入化学研究中,明确了今后化学家们努力的方向,化学真正从古老的炼金术中摆脱出来,道尔顿也因此被后人誉为“近代化学之父”。
发现相似题
与“下列说法正确的是( )A.物质发生缓慢氧化时一定放出热量B....”考查相似的试题有: