返回

高中三年级物理

首页
  • 探究题
    (1)以下有关近代物理内容的若干叙述中,正确的是
    [     ]

    A、一束光照射到某金属表面时,能发生光电效应,此时若减弱照射光的强度,则很有可能不能发生光电效应
    B、物质波既是一种电磁波,又是一种概率波
    C、氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增加,电势能减小
    D、在核聚变反应中,由于要释放能量,发生质量亏损,所以聚变后的原子的总质量数要减少
    (2)第一代核反应堆以铀235为裂变燃料,而在天然铀中占99%的铀238不能被利用,为了解决这个问题,科学家们研究出快中子增殖反应堆,使铀238变成高效核燃料。在反应堆中,使用的核燃料是钚239,裂变时释放出快中子,周围的铀238吸收快吕子后变成铀239,铀239()很不稳定,经过_______________次β衰变后变成钚239(),写出该过程的核反应方程式:______________________________。
    (3)如图所示,位于光滑水平桌面上的小滑块P和Q都可视为质点,质量分别为m和3m。Q与轻弹簧相连,若Q静止,P以某一速度v向Q运动,并与弹簧发生碰撞。求P、Q速度相等时两者的速度是多大?此时弹簧弹性势能多大?

    本题信息:2010年江苏同步题物理探究题难度较难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “(1)以下有关近代物理内容的若干叙述中,正确的是[ ]A、一束光照射到某金属表面时,能发生光电效应,此时若减弱照射光的强度,则很有可能不能发生光电效应B...” 主要考查您对

碰撞

光电效应实验规律

粒子的波动性,德布罗意波

玻尔的原子理论

β衰变

核反应

轻核聚变

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 碰撞
  • 光电效应实验规律
  • 粒子的波动性,德布罗意波
  • 玻尔的原子理论
  • β衰变
  • 核反应
  • 轻核聚变
碰撞:

1、特点:
①时间:过程持续时间即相互作用时间极短
②作用力:在相互作用的过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大
③动量守恒条件:系统的内力远远大于外力,所以,系统即使所受外力之和不为零,外力也可以忽略,系统的总动量守恒
④位移:碰撞过程是在一瞬间发生的,时间极短,所以,在物体发生碰撞的瞬间,可忽略物体的位移,可以认为物体在碰撞前后仍在同一位置
⑤能量:在碰撞过程中,一般伴随着机械能的损失,碰撞后系统的总动能要小于或等于碰撞前系统的总动能,
2、两物体相碰通常有以下三种情况
①两物体碰撞后,动能无损失,称为弹性碰撞。当两相等质量的物体发生弹性碰撞时,则发生速度交换,这是一个很有用的结论。
 
②两物体碰撞后虽分开,但动能有损失,称为非弹性碰撞。
 
③两物体碰撞后合为一个整体,以某一共同速度运动,称为完全非弹性碰撞。此类碰撞中动能损失最多,即动能转化为其他形式能的值最多。

弹性碰撞及讨论:

质量为m1与质量为m2的物体分别以速度运动并发生对心碰撞,碰撞过程中无机械能损失(如图所示)。

设碰后两物体的速度分别为
据动量守恒得
据机械能守恒得
由①②两式得
由上述表达式可以看出:
(1)若
(2)若即速度交换。
(3)若,即m2的速度几乎不变。

“一动一静”模型:

(1)弹性正碰,如图所示,在光滑水平面上质量为 m1的小球以速度v1与质量为m2的静止小球发生弹性正碰.

讨论碰后两球的速度根据动量守恒和机械能守恒有:

解上面两式可得:
碰后m1的速度
碰后m2的速度
讨论:
①若表示表示m1的速度不变,m2以2v1速度被撞出去。
②若都是正值,表示都与v1方向相同。
③若,则有即碰后两球速度互换。
④若为负值,表示方向相反, m1被弹回。
⑤若这时表示m1被反向以原速率弹回,而m2仍静止。

两物体碰后的速度随两物体的质量比变化情况如图所示。

⑦能量传递:在弹性碰撞中,传递的能量跟两者质量比有关,即两球质量越接近,碰撞中传递的动能越大;在两种情况下,传递的动能相等。
(2)完全非弹性碰撞上例中m1与m2发生完全非弹性碰撞,则有,碰后的共同速度
损失的动能

 “二合一”模型:

这种模型是指两个速度不同的物体通过发生相互作用,最终两物体粘在一起运动或以共同的速度运动的模型。
这种模型的主要特征是终态共速(也可以是只在某一时刻共速.而研究的过程是从初始到共速的过程),从能量角度来看,这种过程中能量损失是最大的,属于完全非弹性碰撞的类型,在一维碰撞中的方程有:

相互作用的两个物体在很多情况下皆可当成碰撞处理,那么对相互作用中两物体相距“恰最近”、相距 “恰最远”或“恰上升到最高点”等一类,临界问题,求解的关键都是“速度相等”。在“类碰撞”问题中,碰撞时间不一定很短,但遵守的规律却是相同的,例如下面几种情形。
(1)如图中,光滑水平面上的A物体以速度v0去撞击静止的B物体,A、B两物体相距最近时,两物体速度必定相等,此时弹簧最短,其压缩量最大,系统损失的动能等于弹簧获得的弹性势能,

(2)在图中,物体A以速度v0滑到静止在光滑水平面上的小车B上,当A在B上滑行的距离最远时,A、B相对静止,A、B的速度必定相等,系统损失的动能等于AB间摩擦产生的热量。

(3)在图中,子弹以速度v0射入静止在光滑的水平面上的木块中。当子弹不穿出时,子弹和木块的速度必定相等,系统损失的动能等于子弹与木块间摩擦产生的热量。

(4)如图所示,质量为M的滑块静止在光滑水平面上,滑块的光滑弧面底部与桌面相切,一个质量为m 的小球以速度v0向滑块滚来。设小球不能越过滑块,则小球到达滑块上的最高点时(即小球在竖直方向上的速度为零),两者的速度肯定相等(方向为水平向右),小球获得的重力势能等于系统损失的动能

碰撞合理性的判断方法:

碰撞的合理性要遵循动量守恒定律、能量关系和速度关系:
1.系统动量守恒
 
2.碰撞过程中系统的总动能不会增加
如果物体发生的是弹性碰撞,总动能不变;其他情况碰撞后会有部分动能转化为内能,系统的动能将减小。即

3.速度要符合情景如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即否则无法实现碰撞。碰撞后,原来在前的物体速度一定增大,且原来在前的物体速度大于或等于原来在后的物体速度,即否则碰撞没有结束。如果碰前两物体是相向运动,则碰后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。


光电效应实验规律:

1、在光的照射下物体发射电子的现象叫光电效应。(下图装置中,用弧光灯照射锌版,有电子从锌版表面飞出,使原来不带电的验电器带正电。)

2、光电效应的实验规律

知识扩展:

为什么电子不能一次吸收多个光子而发生光电效应
由于电子非常小,能够捕获光子的几率就非常小,而同时捕获两个光子的几率就更小,有人计算过,一个电子同时捕获两个光子的几率大约为10-34。故可认为一个电子一次只能吸收一个光子。
那么电子为什么不能吸收一个光子后再吸收一个光子从而积累够发生光电效应所需的能量呢?因电子吸收光子的能量后,立即就发生剧烈的热运动,把获得的能量迅速向周围传递开去。到捕获到下一个光子时,原获得的能量早就消耗完了。而在原获得的能量消耗完之前另捕获一个光子,就要求捕获两光子的时间间隔极短。而在极短时间内捕获第二个光子的几率与同时捕获两个光子的几率差别不大(严格说此几率的大小与时间间隔长短有关,时间间隔越长,捕获两个光子的几率就越大,但此时间间隔要求极短)。


物质波:

经典粒子与经典波 经典粒子:任意时刻的确定的位置和速度以及时空中的确定的轨道,是经典物理学中粒子运动的基本特征
经典波:具有波长和频率,即在空间与时间上具有周期性
物质波 德布罗意认为,任何一个运动着的物体,都有一种波与之相伴随,其波长,p是物体的动量,h是普朗克常量。人们把这种波称为物质波,也称为德布罗意波
概率波 在现代物理中,微观粒子的运动不具有确定的位置和动量,没有轨迹的慨念。某时刻粒子在空间任一点都有可能出现,只是在不同位置出现的概率不同。粒子在空间出现的概率遵从波动规律,这种感觉波就成为概率波
不确定关系 利用数学方法对微观粒子的运动进行分析可以知道,如果以缸表示粒子位置的不确定量,以 △P表示粒子在x方向上的动量的不确定量,那么式中h为普朗克常量
备注 (1)宏观物体观察不到其波动性的原因是其波长太短,波动性太弱
(2)物质波是概率波
(3)光波也是概率波
(4)对于光,先有波动理论(v和λ),其后在量子理论中引入了光子的能量E和动量p来补充它的粒子性。对于实物粒子,则先有粒子概念(E和p),再引用德布罗意波的概念来补充它的波动性

玻尔的原子理论:

经典理论的困难 原子的稳定性 电子做加速运动应该辐射电磁波,逐渐减小能量和轨道半径,最终落入原子核,原子是不稳定的,与事实不符
原子光谱的分立性 电子绕核运行辐射频率应等于电子绕核运行频率,由于运行轨道的减小,辐射电磁波频率应不断变化而形成连续光谱,这与原子光谱一明线光谱不符(固定的若干种频率)
玻尔理论基础 实验基础 氢原子光谱的分立特征
理论基础 普朗克关于黑体辐射的量子论与爱因斯坦的光子说
波尔理论内容 量子化假设 ①电子的轨道是量子化的。电子运行轨道的半径不是任意的,只有半径的大小符合一定条件的轨道才是可能的。电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射
②原子的能量是量子化的。这些量子化的能量值叫做能级。原子中这些具有确定能量的稳定状态称为定态。能量最低的状态叫做基态,其他的状态叫做激发态
频率条件 当电子从能量较高的定态轨道(Em)跃迁到能量较低的定态轨道(En)时,会放出能量为hv的光子,这个光子的能量由前后两个能级的能量差决定,即hv=Em一En
对光谱的解释 原子光谱的分立性 通常情况下,原子处于基态,基态是稳定的,处于激发态的原子是不稳定的。原子从高能态向低能态跃迁时放出的光子的能量等于前后两个能级之差。由于原子的能级是分立的,所以放出的光子的能量也是分立的。因此原子的发射光谱只有一些分立的亮线
特征谱线 由于不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不同,这就是不同元素的原子具有不同的特征谱线的原因
氢原子光谱线系 玻尔理论不但成功地解释了氢光谱的巴耳末系,而且对当时已发现的氢光谱的另一线系——帕邢系(在近红外区)也能很好地解释。它是电子从n=4、5、6等能级向n=3 能级跃迁时辐射出来的。此外,玻尔理论还预言了当时尚未发现的氢原子的其他光谱线系,这些线系后来相继被发现,也都跟玻尔理论的预言相符

玻尔的原子理论的成功与局限:

玻尔的原子理论第一次将量子观引入原子领域,提出定态和跃迁的概念,成功地解释了氢原子光谱规律,但玻尔引入的量子化观点并不完善。在量子力学中,核外电子并没有确定的轨道,玻尔的电子轨道只不过是电子出现概率较大的地方。把电子的概率分布用图像表示时,用小黑点的稠密程度代表概率的大小,其结果如同电子在原子核周围形成的云雾,称为“电子云


β衰变:

β衰变方程:(核内)。

衰变:



核反应:

1、定义:原子核在其他粒子的轰击下产生新原子核的过程。所有核反应的反应前后都遵守:质量数守恒、电荷数守恒。
2、原子核的人工转变
①质子的发现:用α粒子轰击氮,
②电子的发现:用α粒子轰击铍,

轻核裂变:

1、聚变:聚变把轻核合成质量较大的核,释放出核能的反应。
2、轻核的聚变:
3、可控热核反应
①热核反应:使轻核发生聚变时,必须使它们的距离十分接近,达到10-15 m的近距离。所以可以通过高温(几百万摄氏度)剧烈的热运动使得一部分原子核已经具有足够的动能克服相互间的斥力,相互碰撞时发生聚变。可见聚变反应需要高温,所以又叫热核反应。
②可控热核反应与裂变相比的优点:释放能量大;无放射性物质;燃料丰富。
③太阳向外辐射大量的能量是靠太阳内部进行的热核反应产生的。


轻核聚变和重核裂变的对比:



发现相似题
与“(1)以下有关近代物理内容的若干叙述中,正确的是[ ]A、一束...”考查相似的试题有: