返回

高中物理

首页
  • 问答题
    在密立根油滴实验装置中,喷雾器向透明的盒子里喷入带点油滴,小盒子内的上、下两金属板分别接在电源两极,通过改变两极板间电场强度可控制带点油滴在板间的运动状态.已知某油滴所受的重力为1.8×10-9N,当电场强度调节为4.0×104N/C时,通过显微镜观察该油滴竖直向下做匀速直线运动,如图所示.
    求:(1)该油滴带何种电荷?
    (2)该油滴所带电荷量是多少?
    (3)该油滴所带电荷量是元电荷e的多少倍?
    魔方格

    本题信息:物理问答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “在密立根油滴实验装置中,喷雾器向透明的盒子里喷入带点油滴,小盒子内的上、下两金属板分别接在电源两极,通过改变两极板间电场强度可控制带点油滴在板间的...” 主要考查您对

共点力的平衡

电场强度的定义式

带电粒子在电场中运动的综合应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 共点力的平衡
  • 电场强度的定义式
  • 带电粒子在电场中运动的综合应用
共点力:

作用在物体的同一点,或作用线相交于一点的几个力。

平衡状态:

物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态。

共点力作用下的物体的平衡条件:

物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx=0,∑Fy=0。

解决平衡问题的常用方法:

隔离法、整体法、图解法、三角形相似法、正交分解法等。
图解法分析分力与合力的关系:

当两个分力成一定的夹角α(α<180)时,增大其中一个分力或使两个分力都增大,合力的变化情况如何呢?这个问题可以用数学公式推导分析,也可以用函数图像数形结合分析,但最简捷有效的方法是图解法。为了便于分析合力的变化,设,借助辅助参考圆来进行分析。如图所示,F1、F2的共点在圆心,而且开始时F1、F2的合力为F,大小恰好为圆的半径。

(1)当保持力F2不变,只增大F1时,如图所示,合力,的大小可能出现三种情况:减小、不变或增大,即 。我们可以得到这样的结论:当两个力F1、F1夹角α保持不变,在增大其中一个分力时,它们的合力大小可能减小、不变或增大。
 
(2)当两个分力F1、F2都增大时,如图所示,合力F 的大小也有可能出现三种情况:减小、不变或增大,即,我们也可以得到这样的结论:当两个力F1、F2夹角α保持不变,在同时增大两个分力时,它们的合力F大小可能减小、不变或增大。


整体法与隔离法:

(1)整体法:当只涉及研究系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。运用整体法解题的基本步骤是:
①明确研究的系统和运动的全过程;
②画出系统整体的受力图和运动全过程的示意图;
③选用适当的物理规律列方程求解。
(2)隔离法:为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。运用隔离法解题的基本步骤是:
①明确研究对象或过程、状态;
②将某个研究对象或某段运动过程、某个状态从全过程中隔离出来;
③画出某状态下的受力图或运动过程示意图;
④选用适当的物理规律列方程求解。隔离法和整体法常常需交叉运用,从而优化解题思路和方法,使解题简捷明了。
受力分析的一般顺序:

(1)明确研究对象,研究对象可以是质点、结点、物体、物体系。
(2)找出所有接触点。
(3)按顺序分析物体受力。一般先分析场力(重力、电场力、磁场力等不接触力).再依次对每一接触点分析弹力、摩擦力。
(4)找出每个力的施力物体。(防“多”分析力)
(5)看受力与运动状态是否相符。(防“漏”力、 “错”力)
(6)正确画出受力图。注意不同对象的受力图用隔离法分别画出,对于质点和不考虑力对物体的形变和转动效果的情况,可将各力平移至物体的重心上,即各力均从重心画起。

受力分析的步骤:

第一步:隔离物体。隔离物体就是把被分析的那个物体或系统单独画出来,而不要管其周围的其他物体,这是受力分析的基础。
第二步:在已隔离的物体上画出重力和其他已知力。重力是一个已知力,可首先把它画出来。另外,物体往往在重力及其他主动力作用下才与其他物体产生挤压、拉伸以及相对运动等,进而产生弹力和摩擦力,所以还要分析其他主动力。第三步:查找接触点和接触面。就是查找被分析物体与其他物体的接触点和接触面。弹力和摩擦力是接触力,其他物体对被分析物体的弹力和摩擦力只能通过接触点和接触面来作用,这就是说寻找物体所受的弹力(拉力、压力、支持力等)和摩擦力只能在被分析物体与其他物体相接触的点和面上找。查找接触点和接触面要全,每个接触点或面上最多有两个力(一个弹力,一个摩擦力)。
第四步:分析弹力(拉力、压力、支持力等)。在被分析物体与其他物体的接触处,如果有形变(挤压或拉伸),则该处就有弹力,反之则没有。在确定弹力存在以后,其方向就比较容易确定了。
第五步:分析摩擦力。摩擦力分静摩擦力和滑动摩擦力,它们的产生条件是两物体接触处不光滑,除挤压外还要有相对滑动的趋势或相对滑动。因此分析接触面上有无摩擦力,首先要看接触面是否光滑(这是题目中的已知条件),其次看有无弹力,然后再进行摩擦力的判断:接触面上有相对滑动时有滑动摩擦力,其大小,方向跟物体的相对运动方向相反;接触面上无相对滑动但有相对滑动趋势时有静摩擦力,它的大小和方向总是跟迫使物体产生相对滑动趋势的外力有关。

受力分析中的技巧:

(1)研究对象的受力图,通常只画出根据性质命名的力,不要把按效果分解的分力或合力分析进去,受力图完成后再进行力的合成或分解。
(2)区分内力和外力。对几个物体的整体进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现;当把某一物体单独隔离分析时,原来的内力变成了外力,要画在受力图上。
(3)在难以确定物体的某些受力情况时,可先根据 (或确定)物体的运动状态,再运用平衡条件或牛顿运动定律来判定未知力。也就是说在分析物体受力时要时刻结合研究对象所处的运动状态,同时对不易确定的力。可结合牛顿第三定律来分析其反作用力是否存在以及方向如何等情况。

电场强度:



计算场强的四种方法:

 1.计算电场强度的常用方法——公式法
(1)是电场强度的定义式,适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q充当“测量工具”的作用。
(2)要是真空中点电荷电场强度的计算式,E 由场源电荷Q和某点到场源电荷的距离r决定。
(3)是场强与电势差的关系式,只适用于匀强电场,注意式中的d为两点间的距离在场强方向的投影。
2.计算多个电荷形成的电场强度的方法——叠加法
当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵循矢量合成的平行四边形定则。
3.计算特殊带电体产生的电场强度的方法
(1)补偿法对于某些物理问题,当直接去解待求的A很困难或没有条件求解时,可设法补上一个B,补偿的原则是使A+B成为一个完整的模型,从而使A+B变得易于求解,而且,补上去的B也必须容易求解。这样,待求的A便可从两者的差值中获得,问题就迎刃而解了,这就是解物理题时常用的补偿法。用这个方法可算出一些特殊的带电体所产生的电场强度。
(2)微元法在某些问题中,场源带电体的形状特殊,不能直接求解场源带电体在空间某点所产生的总电场,此时可将场源带电体分割,在高中阶段,这类问题中分割后的微元常有部分微元关于待求点对称,这就可以利用场的叠加及对称性来解题。
4.计算感应电荷产生的电场强度的常用方法—— 静电平衡法根据静电平衡时导体内部场强处处为零的特点,外部场强与感应电荷产生的场强(附加电场)的合场强为零,可知,这样就可以把复杂问题变简单了。


带电粒子在电场中运动的综合应用:

1、带电粒子在电场中的平衡问题:
带电粒子在电场中处于静止或匀速直线运动状态时,则粒子在电场中处于平衡状态。假设匀强电场的两极板间的电压为U,板间的距离为d,则:mg=qE=,有q=
2、带电粒子在电场中的加速问题:
带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量。
 
3、带电粒子在电场中的偏转问题:
带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动。
垂直于场强方向做匀速直线运动:Vx=V0,L=V0t;
平行于场强方向做初速为零的匀加速直线运动:,偏转角:
4、粒子在交变电场中的往复运动
当电场强度发生变化时,由于带电粒子在电场中的受力将发生变化,从而使粒子的运动状态发生相应的变化,粒子表现出来的运动形式可能是单向变速直线运动,也可能是变速往复运动。带电粒子是做单向变速直线运动,还是做变速往复运动主要由粒子的初始状态与电场的变化规律(受力特点)的形式有关。
 
①若粒子(不计重力)的初速度为零,静止在两极板间,再在两极板间加上甲图的电压,粒子做单向变速直线运动;若加上乙图的电压,粒子则做往复变速运动。
②若粒子以初速度为v0从B板射入两极板之间,并且电场力能在半个周期内使之速度减小到零,则甲图的电压能使粒子做单向变速直线运动;则乙图的电压也不能粒子做往复运动。所以这类问题要结合粒子的初始状态、电压变化的特点及规律、再运用牛顿第二定律和运动学知识综合分析。
注:是否考虑带电粒子的重力要根据具体情况而定,一般说来:
①基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量);
②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力。

电场中无约束情况下的匀速圆周运动:

1.物体做匀速圆周运动的条件从力与运动的关系来看,物体要做匀速圆周运动,所受合外力必须始终垂直于物体运动的方向,而且大小要恒等于物体所需的向心力。冈此,物体做匀速圆周运动时必须受到变力的作用,或者不受恒力的作用,或者恒力能被平衡。
2.在静电力作用下的匀速圆周运动在不考虑带电粒子的重力作用时,带电粒子有两种情况可以做匀速圆周运动。
(1)在带有异种电荷的同定点电荷周围。
(2)在等量同种点电荷的中垂面上,运动电荷与场源电荷异性。在这种情境中,还要求运动电荷所具有的初速度要与所受到的电场力垂直,且满足合外力等于所需向心力的条件。否则运动电荷可能做直线运动、椭圆运动等。
3.有重力参与的匀速圆周运动重力是一恒力,带电粒子要做匀速圆周运动,重力必须被平衡,一种方式是利用水平支撑面的弹力,一种方式是利用变化的电场力的某一分力。

带电粒子所受重力的处理方法:

是否考虑重力要依据具体情况而定:
(1)微观粒子:如电子、质子、α粒子、离子等,除有说明或明确的暗示外,一般不考虑重力(但不能忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。
(3)有些情况下是否考虑粒子的重力需要用假设法从粒子的运动上来分析,若考虑粒子的重力,粒子的运动与题目给定的运动状态不符合,则不需考虑重力;若不考虑粒子所受到的重力,粒子不能完成题目给定的运动过程就必须考虑重力。
(4)在给定具体数据的情况下还可以通过定量计算来选择是否考虑重力的作用,一般说来重力与电场力相差两个甚至两个以上的数量级,粒子的重力就可以忽略。

匀强电场与重力场的复合场问题的处理方法:

1.动力学观点的两种方法
(1)正交分解法:处理这种运动的基本思想与处理偏转运动是类似的,可以将此复杂的运动分解为两个互相正交的比较简单的直线运动,然后再按运动合成的观点去求出复杂运动的有关物理量。
(2)等效“重力”法:将重力与电场力进行合成,如图所示,则等效于“重力”,等效于“重力加速度”

的方向,等效于“重力”的方向,即在重力场中竖直向下的方向。
2.功能观点的解决方法
(1)从功能观点出发分析带电粒子的运动问题时,在对带电粒子受力情况和运动情况进行分析的基础上,再考虑应用恰当的规律解题。如果选用动能定理,要分清有几个力做功,做正功还是负功,是恒力做功还是变力做功,以及初、未状态的动能。
(2)如果选用能垃守恒定律解题,要分清有多少种形式的能参与转化,哪种形式的能增加,哪种形式的能减少,并注意电场力做功与路径无关。

带电粒子在交变电场中运动问题的解决方法:

带电粒子在极板问加速或偏转时,若板间所加电压为一交变电压,则粒子在板间的运动可分两种情况处理:一是粒子在板间运动时间t远小于交变电压的周期T;二是粒子在板间运动时间t与交变电压变化周期 T相差不大甚至t>T。
第一种情况下需采用近似方法处理,可认为在粒子运动的整个过程的短暂时问内,板间电压恒等于粒子入射时的电压,即在粒子运动过程中,板间电压按恒压处理,且等于粒子入射时的瞬时电压。
第二种情况下粒子的运动过程较为复杂,可借助于粒子运动的速度图像。物理图像是表达物理过程、规律的基本工具之一,用图像反映物理过程、规律,具有直观、形象的特点,带电粒子在交变电场中运动时,受电场力作用,其加速度、速度等均做周期性变化,借助图像来描述它在电场中的运动情况,可直观展示物理过程,从而获得启迪,快捷地分析求解。在有交变电场作用下带电粒子运动的问题中,有一类重要问题是判定带电粒子能从极板间穿出的条件或侧移量、偏转角范围等问题。而解决此类问题的关键是找出粒子恰好能从板间飞出的临界状态:恰好从极板边缘飞出,并将其转换为临界状态方程。

带电粒子在接地极板间运动问题的解决方法:

当粒子在平行金属板间运动时,若一个极板接地,会对粒子的运动造成什么影响呢?这需分两种情况来考虑:
(1)粒子运动过程巾与极板之间无接触,极板接地只是确定极板电势的高低,这种情况下极板接地与否对粒子的运动不产生影响。
(2)一个极板接地,当运动电荷与另一极板接触而使电荷量变化,则接地的极板也就会与大地之问发生电荷的转移,从而确保两极板所带电荷量相等,但电荷量变化时,极间电场也随之发生变化。


发现相似题
与“在密立根油滴实验装置中,喷雾器向透明的盒子里喷入带点油滴...”考查相似的试题有: