返回

高中三年级物理

首页
  • 计算题
    如图所示放在水平面上的小车上表面水平,AB是半径为R的1/4光滑圆弧轨道,下端B的切线水平且与平板车上表面平齐,车的质量为M。现有一质量为m的小滑块,从轨道上端A处无初速释放,滑到B端后,再滑到平板车上。若车固定不动,小滑块恰不能从车上掉下。(重力加速度为g)
    (1)求滑块到达B端之前瞬间所受支持力的大小;
    (2)求滑块在车上滑动的过程中,克服摩擦力做的功;
    (3)若车不固定,且地面光滑,把滑块从A点正上方的P点无初速释放,P点到A点的高度为h,滑块从A点进入轨道,最后恰停在车的中点,求车的最大速度。

    本题信息:2011年安徽省模拟题物理计算题难度极难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “如图所示放在水平面上的小车上表面水平,AB是半径为R的1/4光滑圆弧轨道,下端B的切线水平且与平板车上表面平齐,车的质量为M。现有一质量为m的小滑块,从轨道...” 主要考查您对

牛顿运动定律的应用

机械能守恒定律

能量转化与守恒定律

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 牛顿运动定律的应用
  • 机械能守恒定律
  • 能量转化与守恒定律
牛顿运动定律的应用:

1、牛顿运动定律
牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=ma。
牛顿第三定律:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上。
2、应用牛顿运动定律解题的一般步骤
①认真分析题意,明确已知条件和所求量;
②选取研究对象,所选取的研究对象可以是一个物体,也可以是几个物体组成的系统,同一题,根据题意和解题需要也可先后选取不同的研究对象;
③分析研究对象的受力情况和运动情况;
④当研究对对象所受的外力不在一条直线上时;如果物体只受两个力,可以用平行四力形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上,分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动方向上;
⑤根据牛顿第二定律和运动学公式列方程,物体所受外力,加速度、速度等都可以根据规定的正方向按正、负值代公式,按代数和进行运算;
⑥求解方程,检验结果,必要时对结果进行讨论。
牛顿运动定律解决常见问题:

Ⅰ、动力学的两类基本问题:已知力求运动,已知运动求力
①根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况;根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。
②分析这两类问题的关键是抓住受力情况和运动情况的桥梁——加速度。
③求解这两类问题的思路,可由下面的框图来表示。

Ⅱ、超重和失重
物体有向上的加速度(向上加速运动时或向下减速运动)称物体处于超重,处于超重的物体对支持面的压力FN(或对悬挂物的拉力)大于物体的重力mg,即FN=mg+ma;物体有向下的加速度(向下加速运动或向上减速运动)称物体处于失重,处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg,即FN=mg-ma。
Ⅲ、连接体问题
连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统。处理方法——整体法与隔离法:

当两个或两个以上的物体相对同一参考系具有相同加速度时,有些题目也可采用整体与隔离相结合的方法,一般步骤用整体法或隔离法求出加速度,然后用隔离法或整体法求出未知力。
Ⅳ、瞬时加速度问题
①两种基本模型
        刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。
        轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。
②解决此类问题的基本方法
a、分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);
b、分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);
c、求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。
Ⅴ、传送带问题
分析物体在传送带上如何运动的方法
①分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。具体方法是:
a、分析物体的受力情况
        在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。
b、明确物体运动的初速度
        分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。
c、弄清速度方向和物体所受合力方向之间的关系
        物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。
②常见的几种初始情况和运动情况分析
a、物体对地初速度为零,传送带匀速运动(也就是将物体由静止放在运动的传送带上)
        物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。(以下的说明中个字母的意义与此相同)

        物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。其加速度由牛顿第二定律,求得
        在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运动,如果传送带的长度足够长的话,最终物体与传送带相对静止,以传送带的速度V共同匀速运动。
b、物体对地初速度不为零其大小是V20,且与V的方向相同,传送带以速度V匀速运动(也就是物体冲到运动的传送带上)
        若V20的方向与V的方向相同且V20小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V20的匀加速运动,直至与传送带达到共同速度匀速运动。
        若V20的方向与V的方向相同且V20大于V,则物体相对于传送带向前运动,它受到的摩擦力方向向后,如图2所示,摩擦力f的方向与初速度V20方向相反,物体相对于地做初速度是V20的匀减速运动,一直减速至与传送带速度相同,之后以V匀速运动。

c、物体对地初速度V20,与V的方向相反
        如图3所示:物体先沿着V20的方向做匀减速直线运动直至对地的速度为零。然后物体反方向(也就是沿着传送带运动的方向)做匀加速直线运动。
        若V20小于V,物体再次回到出发点时的速度变为-V20,全过程物体受到的摩擦力大小和方向都没有改变。
        若V20大于V,物体在未回到出发点之前与传送带达到共同速度V匀速运动。

        说明:上述分析都是认为传送带足够长,若传送带不是足够长的话,在图2和图3中物体完全可能以不同的速度从右侧离开传送带,应当对题目的条件引起重视。
物体在传送带上相对于传送带运动距离的计算
①弄清楚物体的运动情况,计算出在一段时间内的位移X2
②计算同一段时间内传送带匀速运动的位移X1
③两个位移的矢量之△X=X2-X1就是物体相对于传送带的位移。
说明:传送带匀速运动时,物体相对于地的加速度和相对于传送带的加速度是相同的。
传送带系统功能关系以及能量转化的计算
物体与传送带相对滑动时摩擦力的功
①滑动摩擦力对物体做的功
由动能定理,其中X2是物体对地的位移,滑动摩擦力对物体可能做正功,也可能做负功,物体的动能可能增加也可能减少。
②滑动摩擦力对传送带做的功
由功的概念得,也就是说滑动摩擦力对传送带可能做正功也可能做负功。例如图2中物体的速度大于传送带的速度时物体对传送带做正功。
说明:当摩擦力对于传送带做负功时,我们通常说成是传送带克服摩擦力做功,这个功的数值等于外界向传送带系统输入能量。
③摩擦力对系统做的总功等于摩擦力对物体和传送带做的功的代数和。

结论:滑动摩擦力对系统总是做负功,这个功的数值等于摩擦力与相对位移的积。
④摩擦力对系统做的总功的物理意义是:物体与传送带相对运动过程中系统产生的热量,即
4、应用牛顿第二定律时常用的方法:整体法和隔离法、正交分解法、图像法、临界问题。

功:

1、功的定义:力和作用在力的方向上通过的位移的乘积。是描述力对空间积累效应的物理量,是过程量。
2、功的两个必要因素:作用在物体上的力;物体在力的方向上发生的位移。
3、功的定义式:W=Fscosα,其中F是恒力,s是作用点的位移,α是力与位移间的夹角(功的单位焦耳,简称焦,符号J)。
4、功的计算
①恒力的功可根据W=FScosα进行计算,本公式只适用于恒力做功;
②根据W=P·t,计算一段时间内平均做功;
③利用动能定理计算力的功,特别是变力所做的功;
④根据功是能量转化的量度反过来可求功。


力做功情况的判定方法:

一个力对物体做不做功,是做正功还是做负功,判断的方法是:
(1)看力与位移之间的夹角,或者看力与速度之间的夹角:为锐角时,力对物体做正功;为钝角时,力对物体做负功;为直角时,力对物体不做功。
(2)看物体间是否有能量转化:若有能量转化,则必定有力做功。此方法常用于相连的物体做曲线运动的情况。

变力做功的求法:

公式只适用于求恒力做功,即做功过程中F的大小、方向始终不变。而实际问题中变力做功是常见的,如何解答变力做功问题是学习中的一个难点。不能机械地套用这一公式,必须根据有关物理规律通过变换或转化来求解。
1.用求变力做功如果物体受到的力方向不变,且大小随位移均匀变化,可用求变力F所做的功。其平均值大小 为,其中F1是物体初态时受到的力的值,F2是物体末态时受到的力的值。如在求弹簧弹力所做的功时,再如题目中假定木桩、钉子等所受阻力与击入深度成正比的情况下,都可以用此法求解。
2.用微元法(或分段法)求变力做功变力做功时,可将整个过程分为几个微小的阶段,使力在每个阶段内不变,求出每个阶段内外力所做的功,然后再求和。当力的大小不变而方向始终与运动方向间的夹角恒定时,变力所做的功形:其中s是路程。
3.用等效法求变力做功若某一变力做的功等效于某一恒力做的功,则可以应用公式来求。这样,变力做功问题就转化为了恒力做功问题。
4.用图像法求变力做功存F—l图像中,图线与两坐标轴所围“面积”的代数和表示F做的功,“面积”有正负,在l轴上方的“面积”为正,在l轴下方的“面积”为负。
5.应用动能定理求变力做功
如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能变化量也比较容易计算时,用动能定理就可以求出这个变力所做的功。
6.利用功能关系求变力做功
在变力做功的过程中,当有重力势能、弹性势能以及其他形式的能量参与转化时,可以考虑用功能关系求解。因为做功的过程就是能量转化的过程,并且转化过程中能量守恒。
7.利用W=Pt求变力做功
这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是恒定的。若功率P是变化的,则需用计算,其中当P随时间均匀变化时,


机械能守恒定律:

1、内容:只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变。
2、表达式:

3.条件
机械能守恒的条件是:只有重力或弹力做功。可以从以下三个方面理解:
(1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒。
(2)受其他力,但其他力不做功,只有重力或弹力做功。例如物体沿光滑的曲面下滑,受重力、曲面的支持力的作用,但曲面的支持力不做功,物体的机械能守恒。
(3)其他力做功,但做功的代数和为零。

判定机械能守恒的方法:

 (1)条件分析法:应用系统机械能守恒的条件进行分析。分析物体或系统的受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力 (或弹力)做功,没有其他力做功或其他力做功的代数和为零,则系统的机械能守恒。
(2)能量转化分析法:从能量转化的角度进行分析:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能(如内能),则系统的机械能守恒。
(3)增减情况分析法:直接从机械能的各种形式的能量的增减情况进行分析。若系统的动能与势能均增加或均减少,则系统的机械能不守恒;若系统的动能不变,而势能发生了变化,或系统的势能不变,而动能发生了变化,则系统的机械能不守恒;若系统内各个物体的机械能均增加或均减少,则系统的机械能不守恒。
(4)对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒。

竖直平面内圆周运动与机械能守恒问题的解法:

在自然界中,违背能量守恒的过程肯定是不能够发生的,而不违背能量守恒的过程也不一定能够发生,因为一个过程的进行要受到多种因素的制约,能量守恒只是这个过程发生的一个必要条件。如在竖直平面内的变速圆周运动模型中,无支撑物的情况下,物体要到达圆周的最高点,从能量角度来看,要求物体在最低点动能不小于最高点与最低点的重力势能差值。但只满足此条件物体并不一定能沿圆弧轨道运动到圆弧最高点。因为在沿圆弧轨道运动时还需满足动力学条件:所需向心力不小于重力,由此可以推知,在物体从圆弧轨道最低点开始运动时,若在动能全部转化为重力势能时所能上升的高度满足时,物体可在轨道上速度减小到零,即动能可全部转化为重力势能;在,物体上升到圆周最高点时的速度)时,物体可做完整的圆周运动;若在时,物体将在与圆心等高的位置与圆周最高点之间某处脱离轨道,之后物体做斜上抛运动,到达最高点时速度不为零,动能不能全部转化为重力势能,物体实际上升的高度满足。故在解决这类问题时不能单从能量守恒的角度来考虑。


能量守恒定律:


能量守恒中连接体问题的解法:

在两个或两个以上的物体组成的系统中,单独研究其中一个物体时,机械能往往是不守恒的,但对整体来说,机械能又常常是守恒的,所以在这类问题中通常需取整体作为研究对象,再找出其他运动联系来解题。
在判断系统的机械能是否守恒时,除重力、弹力外无其他外力做功,只是系统机械能守恒的必要条件,还需要看系统内力做功的情况。
(1)系统内两个直接接触的物体,如果满足动量守恒和机械能守恒条件,利用两守恒定律是解这类问题的常用方法两物体的运动联系是沿垂直于接触面的分速度相等。
(2)以轻绳相连的两个物体,如果和外界不存在摩擦力做功等问题时,只有机械能在两个物体之间的相互转移,两物体系统机械能守恒。解此类问题的关键是在绳的方向上两物体速度大小相等。
(3)与轻杆相连的物体在绕固定转动轴转动时,两物体的角速度相等。无转动轴时两物体沿杆方向的分速度相等。有摩擦阻力参与过程的能量问题的解法在有摩擦力或介质阻力参与的过程中,机械能不停地向内能转化,但在摩擦力或介质阻力大小不变的情况下,损失的机械能与通过的路程成正比。而在往返运动形式中,通过同一位置时的速率也就不相同,通过同样距离所用时间也不相同。在比较运动时间时,可以通过比较平均速度的大小进而得到时间关系。


发现相似题
与“如图所示放在水平面上的小车上表面水平,AB是半径为R的1/4光...”考查相似的试题有: