本试题 “如图,用底部带孔的玻璃试管和弹簧可以组装一个简易“多功能实验器”,利用该实验器,一方面能测弹簧的劲度系数,另一方面可测量小球平抛运动初速度,还可以用...” 主要考查您对平抛运动
弹力的大小、胡克定律
弹性势能
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
平抛运动的定义:
将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动。
平抛运动的特性:
以抛出点为坐标原点,水平初速度V0,竖直向下的方向为y轴正方向,建立如图所示的坐标系,在该坐标系下,对任一时刻t:
①位移
分位移(水平方向),(竖直方向);
合位移,(φ为合位移与x轴夹角)。
②速度
分速度(水平方向),Vy=gt(竖直方向);
合速度,(θ为合速度V与x轴夹角)。
③平抛运动时间:(取决于竖直下落的高度)。
④水平射程:(取决于竖直下落的高度和初速度)。
类平抛运动:
(1)定义当物体所受的合外力恒定且与初速度垂直时,物体做类平抛运动。
(2)类平抛运动的分解方法
①常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力的方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性。
②特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为,,初速度分解为,然后分别在x、y方向上列方程求解。
(3)类平抛运动问题的求解思路
根据物体受力特点和运动特点判断该问题属于类平抛运动问题——求出物体运动的加速度——根据具体问题选择用常规分解法还是特殊分解法求解。
(4)类抛体运动
当物体在巨力作用下运动时,若物体的初速度不为零且与外力不在一条直线上,物体所做的运动就是类抛体运动。
在类抛体运动中可采用正交分解法处理问题,基本思路为:
①建立直角坐标系,将外力、初速度沿这两个方向分解。
②求出这两个方向上的加速度、初速度。
③确定这两个方向上的分运动性质,选择合适的方程求解。
弹力的大小:
弹力的大小与物体的形变程度有关,形变量越大,产生的弹力越大;形变量越小,产生的弹力越小。
(1)一般情况下,弹力的大小可以利用平衡条件或牛顿运动定律计算出来;对于弹簧的弹力,在弹性限度内遵循胡克定律:
(2)胡克定律在弹性限度内,弹簧的弹力和其形变量(伸长或缩短的长度)成正比,即F=kx,式中k为劲度系数,x为弹簧的形变量,F为弹力。
胡克定律的图像如图所示。
①式中形变量是指在弹性限度内发生的。形变量x是弹簧在原长基础上的改变量,即弹簧伸缩后的长度L与原长L0的差:x=|L—L0|,不能将x当做弹簧的长度。
②胡克定律中劲度系数k的单位是N/m,由弹簧自身的条件(材料、长度、横截面积)决定,弹簧做好后,劲度系数是确定的。不同弹簧的劲度系数一般不同。
③劲度系数k的两种求法
a.由胡克定律F=kx知:k=F/x
b.由F一x图像知:
重力势能与弹性势能:
与“如图,用底部带孔的玻璃试管和弹簧可以组装一个简易“多功能实...”考查相似的试题有: