返回

高中三年级地理

首页
  • 单选题
    11月3日凌晨1时36分,从对接机构接触开始,经过捕获、缓冲、拉近、锁紧4个步骤,实现刚性连接,形成组合体,中国载人航天首次空间交会对接试验获得成功。据此完成1~3题

    1. 位于南极昆仑站(80°25′01″S, 77°06′58″E)科考人员收看对接直播,当地区时是
    [     ]

    A. 3日22时36分
    B. 2日22时36分
    C. 2日22时44分
    D. 3日4时36分
    2.与地表环境相比,不属于组合体要面临的太空环境特征的是
    [     ]

    A.强辐射
    B.失重
    C.高真空
    D.烈风
    3.此季节
    [     ]

    A.酒泉昼长夜短
    B.悉尼高温少雨
    C.赞比西河进入枯水期
    D.加拿大枫叶如火
    本题信息:2012年江苏期中题地理单选题难度一般 来源:胡丽平
  • 本题答案
    查看答案
本试题 “11月3日凌晨1时36分,从对接机构接触开始,经过捕获、缓冲、拉近、锁紧4个步骤,实现刚性连接,形成组合体,中国载人航天首次空间交会对接试验获得成功。据此...” 主要考查您对

探索宇宙

地球自转的地理意义

地球公转的地理意义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 探索宇宙
  • 地球自转的地理意义
  • 地球公转的地理意义

宇宙:

一般当做天地万物的总称,是时间和空间的组合。

宇宙的基本特点:

由各种形态的物质构成,在不断运动和发展变化。
我们把人类目前已经观测到的有限宇宙叫作可见宇宙或已知宇宙(140亿光年)。

人类对宇宙的认识过程:

天圆地方说、地圆说、地心说、日心说、大爆炸宇宙学说、现代观测。
自古以来,人类就充满了对宇宙的幻想,向往着飞向太空。
人类对宇宙认识的每一次进步都离不开科学技术的发展。自从1609年意大利科学家伽利略发明了望远镜以来,人们不断地改进,发明了许多功能各异的望远镜,从而获得了越来越多的来自宇宙的信息。
太空技术的发展,人造地球卫星、太空望远镜、太空探测器、载人宇宙飞船等相继出现,实现了人类飞天的梦想。现在宇航员还可在太空站上过太空生活呢!目前,我国的航天技术在世界上占有相当重要的位置。长征系列运载火箭的顺利反射,载人飞船“神舟”五号和“神舟”六号圆了中国人的飞天梦想。“嫦娥”一号探月卫星又发射成功,不久的将来,我国宇航员还将登月考察。
100多年来,无数科学家和工程专家为实现人类遨游太空的伟大理想进行了前赴后继的艰苦奋斗,终于在20世纪60年代初在载人航天技术方面取得了重大突破。
在此后的38年中,共有385名男女宇航员遨游过太空,他们在太空连续生活和工作最长时间为439天。在这期间,人类也付出了代价,先后有14名男女宇航员在航天飞机发射和返回时以身殉职,为航天事业献出了生命。


宇宙探索:

1、人类登月:

人类乘宇宙飞船登月球的探测活动。飞到月亮上去是人类千百年来的幻想。
随着空间技术的发展1959年,苏联发射的 “月球1号”飞到月球附近,进行绕月飞行,开始了人类对月球的考察。
1961年5月,美国总统肯尼迪在国会上提出了在60年代末把人送到月球上探测的计划 ——“阿波罗月球探测计划”。“阿波罗”计划的任务包括为载入月球飞行作准备(由“阿波罗”1~10号完成),并进行载人月球飞行(由“阿波罗” 11~17号承担)。
1969年7月16日,人类第一次登月,到1972年,美国先后派出6批宇航员,乘座“阿波罗”飞船拜访了月球,共12人涉足过月面。对月球进行了一系列的科学考察,使人类对月球的认识更加全面,更加深入。
“阿波罗”11~ 17号,每次登月飞行都获得了数目不等的、高分辨率的月球照片,每次登月飞行的实验内容和技术设备都有所发展。“阿波罗11号”的宇航员在月面上安装了月震仪、激光测距仪等,并作了太阳风收集等实验。“阿波罗12号”登月舱携带一辆双轮车,供宇航员考察时装载工具和摄影机之用。“阿波罗”15~17号除了在月面进行实验外,还进行了在环月轨道中的许多测量实验。

2、登月历时:

6次登月,宇航员在月面停留的时间共约300小时,在月面上探测时间合计80小时,其中“阿波罗17号”在月面上停留75小时,探测时间约22小时。6次登月采集到的月球岩石和土壤样品270多公斤,有采自月面“海”的和“山”的,有古老的也有新生的。这些岩石和土壤标本是研究月球物质成分、结构及其形成和演化过程的珍宝。

3、登月收获:

宇航员们放在月球上的地震仪记录表明,月球和地球一样,也有一层外壳,其厚度为40~60公里。这个数据是在风暴洋和弗。拉摩洛等地区测定的;月壳下面是月幔。月幔大致又分为三层。上层月幔厚240公里左右,主要由古代“岩浆海”里沉淀下来的较重物质构成。中层月幔厚达480公里以上,这里大概还保存着混沌时代形成原始月球的“胚胎物质”。上述两层都是固态的,但具有可塑性。内层月幔处于局部熔融状态。月球的中心部分是月核,其温度约为1000℃,远远不如地核那么热(地核温度为龙去脉5000℃~6000℃)。月核很可能是熔融的,可能是由低熔点的硫化铁物质构成。对月球的探测还发现月球的质量分布不均匀,月球近侧存在几个“质量瘤”的重力异常区。

在“阿波罗”科学实验站里装设了很先进的月震仪器。经探测,月球上也有月震,但月震的次数比地震少得多,释放的能量也远远小于地震。月震很弱,最大的月震为1~2级。除了陨星撞击引起的震动外,月亮离地球最近或最远的时候,由于地球的起潮力作用,常会出现月震。

许多国家的科学家对宇航员带回的月岩样品进行了多种项目的共同研究。经实验室分析得出:月岩中已发现近60种矿物,其中有6种在地面上尚未发现;在月岩和月土中发现了地球上的全部化学元素;没有发现可生存的月球有机物,也无古微生物的证据;在某些月岩中有微弱的剩余磁性;月球样品中存在许多太阳活动事件踪迹;根据样品的同位素分析,得出月球年龄约46亿年。

在大部分被月尘和岩屑覆盖的月球表面上,宇航员看到各种形状、大小、出现频率不一的岩石,还发现月球表面散布着一些具有光泽的玻璃物质。月尘在各处的厚度不同,薄的地方只有几厘米,厚的地方有5~6米。

到达月球的宇航员在漆黑的月空中看到大而发光的地球。月球的探测器还在月球空间拍下地球的照片以及绕观月球和地球的照片。月球上的地球光要比地球上的月光明亮8倍多。
本世纪50年代以来,人类对月球探测所取得的成就,远远超过了多少世纪以来的地面观测。“阿波罗”登月成功,是人类科学的结晶,开创了人类认识月球的新纪元。随着科学技术的发展,人类将可能建立沿月球轨道飞行的实验室,巨大的天文望远镜也将在月球上从没有空气的太空观测天空;人也将可能把月球作为出发到遥远行星的一个落脚点。


美国六次登月计划详情:

阿波罗 11号
推进 装置:“火星”V火箭
时间:1969年 7月16日—24日
乘员:阿姆斯 特朗、科 林斯、奥 乐 德林
飞行时间为 8天3小时,首次 载人月球登陆行动,首次在月球行走。“体斯顿,宁静基 地报告,鹰已降落。”1969年7月20日。
降落地点:静 海。
坐标:北0.71度,东23.63度。
太空 行走时间2小时31分钟,树起 了旗帜、安放 了仪器,在登 陆处树立了一个牌子,上面写着:“人类首次月 球登 陆处,1969年7月。我们 是为了全人类带着和平之意而来。”月球表 面 行走时间21.6小时,绕月球轨道飞行30次。登月 舱的上升 阶段舱留在了月球轨道,共采集了20公斤的物质。
阿姆 斯特朗踏上月球表面时 说的话:“虽然对个人来说,那只 是小小的一步;但对人类来说,却是一次巨大的飞跃。”


阿波罗 12号
发射: 1969年 11月14日 16:22:00 UTC
登月: 1969年 11月19日 06:54:35 UTC
3°0'44.60"S - 23°25'17.65"W 风暴海
月表行 走时间: 第1次:3小时56分钟3秒,第2次:3小时49分钟15秒,总共:7小时45分钟18秒
月表 停留时间: 31小时31分钟11.6秒
月球 标本质量: 34.35千克


阿波罗 13号
阿波罗13号 是由美国国家航空航天局(NASA)发射的第三艘 载人登月宇宙飞船,在阿波 罗载 人登月计划中是第7次执行载人任务。阿波罗 13号发射于1970年4月11日。阿波罗 13号在计划中是第3次登月的任务,但是由于 飞船在抵达月球前发生的严重故障,无法执行登月计划,3名宇航员最终成功返回地球。


阿波罗 14号
发射: 1971年 1月31日 21:03:02 UTC
登月: 1971年 2月5日 09:18:11 UTC
纬度:3° 38' 43.08" S-17° 28' 16.90" W Fra Mauro
月表 行走时间: 第1次:4小时47分钟50秒
第2次:4小时34分钟41秒
总共:9小时22分钟31秒
月表 停留时间: 33小时30分钟29秒
阿波罗 14号(Apollo 14)是美国国家航空航天局 的阿波罗计划中的第八次载人任务,是人类第三次成功登月的载人登月任务。


阿波罗 15号
发射地点:佛罗里达州 肯尼迪航天中心 LC 39A
发射: 1971年 7月26日 13:34:00 UTC
登月: 1971年 7月30日 22:16:29 UTC
地理坐标:26° 7' 55.99" N-3° 38' 1.90" E
登月舱站立舱外活动:33分钟7秒
第1次:6小时 32分钟42秒
第2次:7小时 12分钟14秒
第3次:4小时 49分钟50秒
总共:18小时 34分钟46秒
月表停留时间: 66小时54分钟53.9秒
阿波罗 15号(Apollo 15)是阿波罗计划(Project Apollo)中的第九次载人 任务,也是人类第四次成功登月 的载人登月任务。阿波罗 15号还是阿波罗计划中 首次J任务——与前几次任务相比在月球上停留更久,科学研究的比例更大。
指令长大卫·斯科特(David Scott)和登月舱 驾驶员 詹姆斯·艾尔文(James Irwin)在月球表面停留了三天,在登月舱外 的时间总长为十八个半小时。两位 宇航员驾驶的历史上第一辆月球车使他们在月球上穿越的距离比前几次任务遥远了很多。


阿波罗 16号
发射地点: 佛罗里达州 肯尼迪航天中心 LC 39A
发射: 1972年 4月16日 17:54:00 UTC
登月: 1972年 4月21日 02:23:35 UTC
8°58'22.84"S-15°30'0.68"E 笛卡尔环形山
月表行走时间:
第1次:7小时 11分钟2秒
第2次:7小时 23分钟9秒
第3次:5小时 40分钟3秒
总共:20小时 14分钟14秒
月表停留时间: 71小时 2分钟13秒
阿波罗16号(Apollo 16)是阿波罗计划 中的第十次载人航天任务,也是人类历史 上第五次成功登月的任务。


阿波罗 17号
任务名称:阿波罗17号
登月舱:挑战者
成员人数:3
发射地点:佛罗里达 州肯尼迪航天中心 LC 39A
发射:1972年12月 7日05:33:00 UTC
登月:1972年12月 11日19:54:57 UTC;20.19080°N-30.77168°E;陶拉斯-利特罗山谷
月表行走时间:第1次:7小时 11分钟53秒;第2次:7小时 36分钟56秒;第3次:7小时 15分钟8秒;总共:22小时3分钟57秒
月表 停留时间:74小时59分钟40秒
阿波罗 17号是美国阿波罗计划中的最后 一艘飞往月球的载人太空船。飞行时间为1972年 12月6日至1972年 12月19日,登陆地点 为陶拉斯·利特罗山脉,停留时间为74小时59分,为阿波罗计划 中停留月球表面时间最久的载人太空船。因为如此,采集的岩石 标本也是最多的,为152公斤重。
阿波罗 17号(Apollo 17)是美国国家 航空航天局的阿波罗计划中的 第十一次载人任务,是人类第六次也是迄今为止 最后一次登月任务。阿波罗 17号是阿波罗计划中唯一的夜间 发射的任务,也为阿波罗计划画上了句号。


地球自转的地理意义:

1、昼夜更替:

此处需要注意,容易理解为自转产生了昼夜现象,但地球不自转仍有昼夜现象,在一年中地球公转也会使某一地有一次昼夜变化,只有地球不停地自转,才会产生昼夜更替现象。
(1)在晨昏线上各地,太阳高度为0°;
(2)太阳直射光线与晨昏线成90°;
(3)直射点A与晨昏线和极昼(夜)最小纬线圈切点B的纬度之和等于90°;
如当太阳直射在北回归线(23°26′N)时,切点B的纬度为66°34′N。
当太阳直射在20°S时,切点B的纬度为70°N。


2、地方时与区时:

(1)地方时
概念:因经度不同而出现不同的时刻,称为地方时。因此,不同经线上具有不同的地方时。
随地球自转,一天中太阳东升西落,太阳经过某地天空的最高点时为此地的地方时12点。
正午太阳高度是正午时太阳光线与地面的夹角,是一日内最大的太阳高度。
经度相同的地方,地方时相同;经度不同的地方,地方时不同。
南、北极点不计地方时;东早西迟;
经度每隔15°,地方时相差1小时;
经度每隔1°,地方时相差4分钟;

地方时的计算:
①求经度差
②把经度差转换为时间差
③东加西减:
    若所求地在已知地的东面,加上时间差;
    若所求地在已知地的西面,减去时间差。
(2)时区和区时
①时区的划分

1)以15°划分为一个时区.全球划分为24个时区.
2)以0°经线为中央经线,向东、西方向各取7.5°,合计为15°,该时区称为中时区(或零时区)。
3)以中时区为起点,向东、西方向各划分12个时区。180°经线是东、西十二时区共同的中央经线。
注意:中时区、东西十二区的特殊性
②区时
定义:每个时区都以其中央经线的地方时作为该区的区时。
中央经线=时区数×15°
例如:东八区的中央经线是120°E;西五区的中央经线是75°W
区时计算:
求所在地的时区
求时区差
东加西减:
若所求时区在已知时区的东面,加上时区差;
若所求时区在已知时区的西面,减去时区差。
(3)日期变更:
抓住两个要点:
确定180°经线
确定0点或者24点所在的经线

3、物体水平运动的方向产生偏向:

地球上水平运动的物体,无论朝哪个方向运动,都会发生偏向,在北半球偏右,在南北半球偏左。赤道上经线是互相平行的,无偏向。

4、自转对地球形状的影响:

地球在自转过程中,球上各质点都在绕着地轴作圆周运动。因此,就会产生惯性离心力。这种离心力随着物体距离地轴半径的增大而增大,也就是说,从赤道向两极,惯性离心力逐渐减小。使得地球由两极向赤道逐渐膨胀,长期作用使地球变成两极稍扁、赤道略鼓的椭球体形状。

1、昼夜更替:
此处需要注意,学生容易理解为自转产生了昼夜现象,但地球不自转仍有昼夜现象,在一年中地球公转也会使某一地有一次昼夜变化,只有地球不停地自转,才会产生昼夜更替现象。
(1)在晨昏线上各地,太阳高度为0°;
(2)太阳直射光线与晨昏线成90°;
(3)直射点A与晨昏线和极昼(夜)最小纬线圈切点B的纬度之和等于90°;如当太阳直射在北回归线(23°26′N)时,切点B的纬度为66°34′N。当太阳直射在20°S时,切点B的纬度为70°N。

2、地方时与区时:
(1)地方时概念:因经度不同而出现不同的时刻,称为地方时。因此,不同经线上具有不同的地方时。
随地球自转,一天中太阳东升西落,太阳经过某地天空的最高点时为此地的地方时12点。
正午太阳高度是正午时太阳光线与地面的夹角,是一日内最大的太阳高度。
经度相同的地方,地方时相同;经度不同的地方,地方时不同。
南、北极点不计地方时;东早西迟;经度每隔15°,地方时相差1小时;经度每隔1°,地方时相差4分钟。
3、地方时的计算:
①求经度差
②把经度差转换为时间差
③东加西减:
若所求地在已知地的东面,加上时间差;
若所求地在已知地的西面,减去时间差。
(2)时区和区时
①时区的划分
1)以15°划分为一个时区.全球划分为24个时区.
2)以0°经线为中央经线,向东、西方向各取7.5°,合计为15°,该时区称为中时区(或零时区)。
3)以中时区为起点,向东、西方向各划分12个时区。180°经线是东、西十二时区共同的中央经线。
注意:中时区、东西十二区的特殊性。
②区时
定义:每个时区都以其中央经线的地方时作为该区的区时。
中央经线=时区数×15° 例如:东八区的中央经线是120°E;西五区的中央经线是75°W
区时计算:
求所在地的时区
求时区差东加西减:
若所求时区在已知时区的东面,加上时区差;
若所求时区在已知时区的西面,减去时区差。
(3)日期变更:抓住两个要点:确定180°经线确定0点或者24点所在的经线

3、物体水平运动的方向产生偏向:
地球上水平运动的物体,无论朝哪个方向运动,都会发生偏向,在北半球偏右,在南北半球偏左。赤道上经线是互相平行的,无偏向。

4、自转对地球形状的影响:
地球在自转过程中,球上各质点都在绕着地轴作圆周运动。因此,就会产生惯性离心力。这种离心力随着物体距离地轴半径的增大而增大,也就是说,从赤道向两极,惯性离心力逐渐减小。使得地球由两极向赤道逐渐膨胀,长期作用使地球变成两极稍扁、赤道略鼓的椭球体形状。















昼夜现象的产生:
(1)昼夜现象产生是由于“地球不透明、不发光、太阳只能照亮地球表面的一半”造成的。昼夜交替是地球的自转造成的。
(2)若地球不自转,也不公转,有昼夜现象,但无昼夜交替现象;若地球只公转不自转,既有昼夜现象,也有昼夜交替现象,只不过昼夜交替的周期为一年。 

地转偏向力需要注意的问题:
地转偏向力只改变物体运动的方向,并 不改变物体运动速度的大小。地转偏向力的方向与物体水平运动的方向相垂直。

地方时计算技巧:
已知某一点时刻,求另一点时刻时,可用数轴法。具体方法如下:把某一条纬线变形为一个数轴,0°为原点,东经度为正值,西经度为负值。把A(已知时间、地点)、B(未知时间、地点)落实在数轴上。无论A、B实际方向关系如何,在数轴上,若B在A东,由A求B就要加;若B在A西,由A求B就要减。


 晨昏线的特点及应用:
晨昏线又叫做晨昏圈,其中半个圆圈代表晨线,半个圆圈代表昏线。
1.晨昏线(圈)的特点

(1)晨昏圈是一个大圆,将地球平分成昼半球和夜半球两部分。
(2)晨昏线上各地,太阳高度为0°;昼半球太阳高度>0°,夜半球太阳高度<0°。
(3)晨昏圈所在平面始终与太阳光线垂直。
(4)晨昏线和极昼圈(极夜圈)的切点的纬度与太阳直射点的纬度之和等于90°(如上图中α+θ=β+θ=90°)。晨昏线和极昼圈的切点(如上图中C)地方时为24时(0时);晨昏线和极夜圈的切点(如上图中D)地方时为12时。
(5)晨昏线(圈)在春秋分时与经线圈重合,二至时与极圈相切。
(6)晨昏线以15°/小时的速度自东向西移动。
2.晨昏线的应用
(1)确定地球的自转方向若右图中AB为昏线,则地球呈逆时针方向自转;若BC为昏线,则地球呈顺时针方向自转。

(2)确定地方时过晨线与赤道交点的经线地方时是6∶00,过昏线与赤道交点的经线地方时是18∶00,如右图中BN地方时是6∶00, AN地方时是18∶00。

(3)确定日期和季节
①晨昏线经过南、北极点(与经线重合)可判定这一天为3月21日或9月23日,节气是春分日或秋分日。
②晨昏线与极圈相切:北极圈及其以北出现极昼(南极圈及其以南出现极夜),日期是6月22日前后,节气是夏至日;北极圈及其以北出现极夜(南极圈及其以南出现极昼),日期是12月22日前后,节气是冬至日。
(4)确定太阳直射点的位置
①确定纬度:与晨昏线相切的纬线度数与太阳直射点的度数互余,晨昏线与地轴夹角的度数等于太阳直射点的纬度。
②确定经线:与晨线(昏线)和赤道交点相差90°且大部分或全部在昼半球一侧的经线是太阳直射的经线;过晨昏线与纬线切点,且大部分在昼半球的经线是太阳直射的经线。
(5)确定昼夜长短
晨昏线将地球上的纬线分成昼弧和夜弧两部分,昼长等于该纬线昼弧所跨经度除以15°的商,夜长是夜弧所跨经度除以15°的商。
(6)确定日出、日落时间
某地的日出时间就是该地所在纬线与晨线交点的地方时;日落时间就是该地所在纬线与昏线交点的地方时。
(7)确定极昼、极夜的范围
晨昏线与哪个纬线圈相切,该纬线圈与极点之间的纬度范围内就会出现极昼或极夜现象,南、北半球的极昼、极夜现象正好相反。






地球公转的地理意义:

1、引起正午太阳高度的变化:


(1)太阳光线对于地平面的交角,叫做太阳高度角,简称太阳高度(用H表示)。同一时刻正午太阳高度由直射点向南北两侧递减。因此,太阳直射点的位置决定着一个地方的正午太阳高度的大小。在太阳直射点上,太阳高度为90°,在晨昏线上,太阳高度是0°。

(2)正午太阳高度变化的原因:由于黄赤交角的存在,太阳直射点的南北移动,引起正午太阳高度的变化。
(3)正午太阳高度的变化规律:正午太阳高度就是一日内最大的太阳高度,它的大小随纬度不同和季节变化而有规律地变化。

正午太阳高度的变化规律——按节气:

节气

太阳直射点 正午太阳高度的纬度变化
春分 赤道 赤道正午太阳高度为90°,由赤道向南北两极递减
夏至 北回归线 北回归线正午太阳高度为90°,由北回归线向南北两侧递减
秋分 赤道 赤道正午太阳高度为90°,由赤道向南北两极递减
冬至 南回归线 南回归线正午太阳高度为90°,由南回归线向南北两侧递减
归纳 太阳直射点所在纬度正午太阳高度为90°,距离太阳直射点所在纬线越近,正午太阳高度角越大,越远则正午太阳高度角越小

正午太阳高度的变化规律——按纬度:

纬度地带

正午太阳高度的变化

北回归线及其以北地区 北半球冬至日后逐渐增大,北半球夏至日达到一年中最大值,然后又逐渐缩小,到北半球冬至日达到一年中最小值
南北回归线
之间的地区
一年中有两次太阳直射,直射时正午太阳高度最大
南北回归线上 一年中有一次太阳直射,直射时正午太阳高度最大
南回归线及其以南地区 北半球冬至日达到一年中最大值,然后又逐渐缩小,到北半球夏至日达到一年中最小值

一年中同一纬度地区的正午太阳告诉随时间变化图:(北半球)


2、昼夜长短随纬度和季节变化:

地球昼半球和夜半球的分界线叫晨昏线(圈)。晨昏线把所经过的纬线分割成昼弧和夜弧。由于黄赤交角的存在,除二分日时晨昏线通过两极并平分所有纬线圈外,其它时间,每一纬线圈都被分割成不等长的昼弧和夜弧两部分(赤道除外)。地球自转一周,如果所经历的昼弧长,则白天长;夜弧长,则白昼短。昼夜长短随纬度和季节变化的规律见下表:

3、四季更替:

(1)从天文四季:
夏季就是一年中白昼最长、正午太阳高度最高的季节。以24节气中的立春(2月4日或5日)、立夏(5月5日或6日)、立秋(8月7日或8日)、立冬(11月7日或8日)为起点。地球在公转轨道上的运行会产生天气和季节的有规律变化,传统农业中农民依此进行农业生产,有如:“谷雨前后种瓜点豆”的谚语。
黄赤交角是影响天文四季的直接原因。这是因为:
正午太阳高度随纬度分布是:低纬大而高纬小,春秋二分,从赤道向两极递减;夏至日,从北回归线向南北两侧递减;冬至日,从南回归线向南北两侧递减。
随季节变化是:北回归线以北,夏至日前后正午太阳高度达最大值,冬至日前后达最小值。南回归线以南则相反。南北回归线之间地带,太阳每年直射两次。

(2)气候四季包含的月份。春(3、4、5月)、夏(6、7、8月)、秋(9、10、11月)、冬(12、1、2月)。
(3)西方四季:春分、夏至、秋分、冬至为起点。比我国天文四季晚一个半月。

4、五带划分:

以地表获得太阳热量的多少来划分热带、温带、寒带。
热带:南北回归线之间有太阳直射机会,接受太阳辐射最多。
温带:回归线与极圈之间,受热适中,四季明显。
寒带:极圈与极点之间,太阳高度角低,有极昼、极夜现象。
地球公转与直射点移动、正午太阳高度、昼夜长短的季节变化关系。
重点详解(一)——正午太阳高度的应用:

1、正午太阳高度的计算:

某地正午太阳高度的大小,可以用下面的公式来计算:H=90°-|φ-δ|。其中H为正午太阳高度数,φ为当地地理纬度,永远取正值,δ为直射点的纬度,当地夏半年取正值,冬半年取负值。
在实际的解题中,许多时候并不需要运用此公式。由于在某地点正午太阳高度与直射点太阳高度差值等于它们的纬度差,所以利用下面公式计算更为方便;某地正午太阳高度角H=90°-δ,其中δ为某地与太阳直射点的纬度差。

2、正午太阳高度变化规律的应用:

(1)确定地方时
当某地太阳高度达一天中最大值时,就是一天的正午时刻,此时当地的地方时是12时。
(2)判断所在地区的纬度
当太阳直射点位置一定时,如果我们能够知道当地的正午太阳高度,就可以根据“某地与太阳直射点相差多少纬度,正午太阳高度就相差多少度”的规律,求出当地的地理纬度。
(3)确定房屋的朝向
为了获得最充足的太阳光照,各地房屋的朝向与正午太阳所在的位置有关。
北回归线以北的地区,正午太阳位于南方,房屋朝南;南回归线以南的地区,正午太阳位于北方,房屋朝北。
(4)判断日影长短及方向
太阳直射点上,物体的影子缩短为0;正午太阳高度越大,日影越短;反之,日影越长。正午是一天中日影最短的时刻。
日影永远朝向背离太阳的方向,北回归线以北的地区,正午的日影全年朝向正北(北极点除外),冬至日日影最长,夏至日最短;南回归线以南的地区,正午的日影全年朝向正南(南极点除外),夏至日日影最长,冬至日最短;南北回归线之间的地区,正午日影夏至日朝向正南,冬至日朝向正北;直射时日影最短(等于0)
(5)计算楼间距、楼高
为了更好地保持各楼层都有良好的采光,楼与楼之间应当保持适当距离。
纬度较低的地区,楼距较小,纬度较高的地区楼距较大。以我国为例,见下图,南楼高度为h,该地冬至日正午太阳高度为H,则最小楼间距L=h·cotH。
(6)计算热水器的安装角度
太阳能热水器集热面与太阳光线垂直;太阳能热水器集热面与地面的夹角同正午太阳高度互余。
为了更好地利用太阳能,应不断调整太阳能热水器与楼顶平面之间的倾角,使太阳光与受热板之间成直角。其倾角和正午太阳高度角的关系为α+h=90°(如图所示)。
注:
正午太阳高度与太阳直射点的关系
①正午太阳高度一定是指当地正午12点整的太阳高度,但是太阳不一定直射当地所在的纬度。
②太阳直射点必须是在纬度23.5°之间来回移动,纬度大于23.5°的地方太阳不能直射,但有正午太阳高度,只是其正午太阳高度一定小于90°。
③正午太阳高度的计算及其应用都与当地纬度和太阳直射点的纬度有关,二者缺一不可。
④太阳直射点以一个回归年为周期在南北回归线及其之间来回移动,故直射点大约每个月移动纬度为8°,每移动1°大约需要4天。
⑤正午太阳高度的变化规律与太阳直射点密切相关,距离太阳直射点越近,正午太阳高度越大;距离太阳直射点越远,正午太阳高度越小。

重点详解(二)——正午太阳高度的应用:

在太阳光的照射下,物体总会有自己的影子(除太阳直射的情况),影子的朝向与太阳方位相关。同一时间在不同纬度地区,太阳方位是不同的;同一纬度地区在不同时间,太阳方位也是不一样的。因而影子的朝向存在日变化和季节变化。
(1)同一地区在不同节气日影的朝向(以北半球为例)
①赤道地区“二分二至”日日影的朝向
在赤道地区,一年四季太阳都是垂直升起而又垂直落下,且太阳升落方位的纬度就是太阳直射的纬度。

赤道

日出方位

日影朝向

正午太阳方位

日影朝向

日落方位

日影朝向

夏至

东北

西南

正北66°34′

正南

西北

东南

春秋分

正东

正西

天顶90°

正西

正东

冬至

东南

西北

正南66°34′

正北

西南

东北

②北回归线上“二分二至”日日影的朝向
在赤道至出现极昼极夜的纬度地区,纬度越高,太阳升落的方位偏移正东的角度越大。


北回归线

日出方位

日影朝向

正午太阳方位

日影朝向

日落方位

日影朝向

夏至

东北

西南

天顶90°

西北

东南

春秋分

正东

正西

正南66°34′

正北

正西

正东

冬至

东南

西北

正南43°08′

正北

西南

东北

③北极圈上“二分二至”日日影的朝向
在开始出现极昼的地区,太阳升落方位为正北,即东偏北90°。


北极圈

日出方位

日影朝向

正午太阳方位

日影朝向

日落方位

日影朝向

夏至

正北

正南

正南46°52′

正北

正北

正南

春秋分

正东

正西

正南23°26′

正北

正西

正东

冬至

极夜无日出日落

④北极点“二分二至”日日影的朝向
在极昼期间,北极点上,由于太阳周日视平圈始终平行于地平圈,在一天中太阳高度没有变化,始终等于该日直射点的纬度,太阳只有方位变化而无升落,因而不存在升落方位问题。在春分秋分日,极点昼夜平分,此时太阳高度为0°,刚好没入地平圈。


北极点

日出方位

日影朝向

正午太阳方位

日影朝向

日落方位

日影朝向

夏至

正南

正南23°26′

正南

正南

春秋分

正南

正南

正南0°

正南

正南

正南

冬至

极夜无日出日落

(2)同一节气不同地区的日影的朝向(以南半球为例)
①“二分日”南半球不同地区日影的朝向
春分秋分日太阳直射赤道,全球昼夜平分,不同地区日出、日落的方位都是正东升、正西落(除南极点),并且随纬度的升高太阳视平圈与地平圈所成二面角由90°变为0°。即太阳高度由90°减为0°


春分秋分

日出方位

日影朝向

正午太阳方位

日影朝向

日落方位

日影朝向

赤道

正东

正西

天顶90°

正西

正东

南回归线

正东

正西

正北66°34′

正南

正西

正东

南极圈

正东

正西

正北23°26′

正南

正西

正东

南极点

正北

正北

正北0°

正北

正北

正北

②夏至日南半球不同地区日影的朝向
北半球夏至日太阳直射北回归线,南极圈及其以内出现极夜,赤道地区太阳从正东偏北23°26′垂直升起,从正西偏北23°26′垂直落下。纬度越高,偏移正东向北的角度越大,极夜时刚好日出日落方位收缩为一点,位于正北方。


夏至日

日出方位

日影朝向

正午太阳方位

日影朝向

日落方位

日影朝向

赤道

东北

西南

正北66°34′

正南

西北

东南

南回归线

东北

西南

正北43°08′

正南

西北

东南

南极圈

极夜
无日出日落

极夜
无日出日落

极夜
无日出日落

极夜
无日出日落

极夜
无日出日落

极夜
无日出日落

南极点

极夜
无日出日落

极夜
无日出日落

极夜
无日出日落

极夜
无日出日落

极夜
无日出日落

极夜
无日出日落

③冬至日南半球不同地区日影的朝向
北半球冬至日太阳直射南回归线,南极圈及其以内出现极昼,赤道地区太阳从正东偏南23°26′垂直升起,从正西偏南23°26′垂直落下。纬度越高,日出偏移正东向南的角度和日落偏移正西向南的角度越大,到极圈时刚好日出日落位于正南方。


冬至日

日出方位

日影朝向

正午太阳方位

日影朝向

日落方位

日影朝向

赤道

东南

西北

正南66°34′

正北

西南

东北

南回归线

东南

西北

天顶90°

西南

东北

南极圈

正南

正北

正北46°52′

正南

正南

正北

南极点

无日出日落,太阳都位于正北23°26′,日影都朝向正北


昼夜长短的变化:

以北半球为例:


正午太阳高度的变化:

(1)纬度变化:由太阳直射点向南北两侧递减。
(2)季节变化


发现相似题
与“11月3日凌晨1时36分,从对接机构接触开始,经过捕获、缓冲、...”考查相似的试题有: