返回

高中三年级生物

首页
  • 读图填空题
    某校学生在开展研究性学习时,进行人类遗传病方面的调查研究。图甲是该校学生根据调查结果绘制的某种遗传病的系谱图(显、隐性基因用A、a表示)。请分析回答:

    (1)通过个体可以排除这种病是显性遗传病。若Ⅱ4号个体不带有此致病基因,Ⅲ7和Ⅲ10婚配,后代男孩患此病的概率是_________。
    (2)Ⅲ7号个体婚前应进行__________,以防止生出有遗传病的后代。若要调查该病在人群中的发病率,需要保证①.___________________,②.__________________。
    (3)若Ⅱ4号个体带有此致病基因,Ⅲ7是红绿色盲基因携带者。
    ①.Ⅲ7和Ⅲ10婚配,生下患病孩子的概率是__________。
    ②.假设控制人的正常色觉和红绿色盲的基因分别用B和b表示,图乙表示Ⅱ3产生的卵细胞中相关染色体模式图,请绘制出该卵细胞形成过程中减数第一次分裂后期图,并在图中标注相关的基因。
    本题信息:2011年模拟题生物读图填空题难度极难 来源:姚瑶
  • 本题答案
    查看答案
本试题 “某校学生在开展研究性学习时,进行人类遗传病方面的调查研究。图甲是该校学生根据调查结果绘制的某种遗传病的系谱图(显、隐性基因用A、a表示)。请分析回答:(...” 主要考查您对

分离定律

减数分裂

人类红绿色盲症

人类遗传病

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 分离定律
  • 减数分裂
  • 人类红绿色盲症
  • 人类遗传病

 基因的分离定律及应用:

1.基因的分离定律
(1)内容:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
(2)实质:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。
(3)适用范围:①一对相对性状的遗传;②细胞核内染色体上的基因;③进行有性生殖的真核生物。
(4)细胞学基础:同源染色体分离。
(5)作用时间:有性生殖形成配子时(减数第一次分裂后期)。
2、分离定律在实践中的应用
(1)正确解释某些遗传现象两个有病的双亲生出无病的孩子,即“有中生无”,肯定是显性遗传病;两个无病的双亲生出有病的孩子,即“无中生有”,肯定是隐性遗传病。

(2)指导杂交育种
①优良性状为显性性状:连续自交,直到不发生性状分离为止,收获性状不发生分离的植株上的种子,留种推广。
②优良性状为隐性性状:一旦出现就能稳定遗传,便可留种推广。
③优良性状为杂合子:两个纯和的不同性状个体杂交后代就是杂合子,但每年都要配种。
(3)禁止近亲结婚的原理每个人都携带5~6种不同的隐性致病遗传因子。近亲结婚的双方很可能是同一种致病因子的携带者,他们的子女患隐性遗传病的机会大大增加,因此法律禁止近亲结婚。 


交配方式类:

1、杂交:基因型不同的个体间相互交配的过程。
2、自交:植物中自花传粉和雌雄异花的同株传粉。广义上讲,基因型相同的个体间交配均可称为自交。自交是获得纯合子的有效方法。
3、测交:就是让杂种(F1)与隐性纯合子杂交,来测F1基因型的方法。
4、正交与反交:对于雌雄异体的生物杂交,若甲♀×乙♂为正交,则乙♀×甲♂为反交。
 5、常用符号的含义
符号  P F1  F2  ×  ♀ C、D等 c、d等
 含义 亲本 子一代 子二代 杂交 自交  父本(雄配子)  母本(雌配子)   显性遗传因子  隐性遗传因子

孟德尔杂交实验的科学方法:

1.遗传学实验的科学杂交方法
项目 注意事项

人工异花传粉示意图

操作步骤 去雄  套袋 人工授粉套袋
套袋 去掉雄蕊后套袋是为了防止其他花粉与雌蕊接触而完成受精作用
去雄时间 花蕊成熟之前
去雄程度 要彻底、全部清除干净
人工授粉 待花蕊成熟后,用毛笔蘸取父本的花粉,涂抹在已去雄的花的雌蕊柱头上
2.假说一演绎法分析
(1)假说一演绎法:在观察和分析的基础上提出问题以后,通过推理和想像提出解释问题的假说,根据假说进行演绎推理,再通过实验检验演绎推理的结论。如果实验结果与预期结论相符,就证明假说是正确的,反之,则说明假说是错误的。这是现代科学研究中常用的一种科学方法,叫做假说一演绎法。
(2)一对相对性状的杂交实验“假说一演绎分析” 
      

一对相对性状的杂交实验:

1、实验过程及结果(如下图)

2、对分离现象的解释
(l)生物的性状是由遗传因子决定的。
(2)体细胞中遗传因子是成对存在的。
(3)生物在形成生殖细胞——配子时,成对的遗传因子彼此分离,分别进入不同的配子中。
(4)受精时,雌、雄配子的结合是随机的。
3、对分离现象解释的验证——测交(如下图)

结果证实了:
①F1是杂合子,基因型为Dd;
②F1能产生D和d两种配子且比例相等;
③F1在形成配子过程中,D和d能彼此分离(即没有融合)。
4、孟德尔的研究思路:假说一演绎法

(3)设计测交实验,验证假说。
(4)归纳综合,总结规律:基因的分离定律。
表解基因的分离定律和自由组合定律的不同:

分离定律 自由组合定律
 两对相对性状  n对相对性状
 相对性状的对数  1对 2对 n对
等位基因及位置  1对等位基因位于1对同源染色体上  2对等位基因位于2对同源染色体上  n对等位基因位于n对同源染色体上
  F1的配子  2种,比例相等 4种,比例相等 2n种,比例相等
  F2的表现型及比例 2种,3:1 4种,9:3:3:1 2n种,(3:1)n
 F2的基因型及比例 3种,1:2:1  9种,(1:2:1)2  3n种,(1:2:1)n
测交后代表现型及比例 2种,比例相等 4种,比例相等 2n种,比例相等
遗传实质 减数分裂时,等位基因随同源染色体的分离而分开,分别进入不同配子中 减数分裂时,在等位基因随同源染色体分开而分离的同时,非同源染色体上的非等位基因自由组合,进而进入同一配子中
实践应用 纯种鉴定及杂种自交纯合 将优良性状重组在一起
联系 在遗传中,分离定律和自由组合定律同时起作用:在减数分裂形成配子时,既有同源染色体上等位基因的分离,又有非同源染色体上非等位基因的自由组合

知识点拨:

分离定律实验注意
1、亲本上结的种子为F1,F1植株上结的种子为F2
2、亲本产生的雌雄配子数量不等,雄配子数量远远多于雌配子,基因型为Dd的植物产生的雄配子中,含D的和含d的相等,雌配子中含D的和含d的相等。 


杂合子Aa连续自交后代分析:

1、杂合子连续自交n次后,第n代的情况如下表:
Fn  杂合子  纯合子 显性纯合子 隐性纯合子 显性性状个体  隐性性状个体
所占比例 1/2n  1-1/2n 1/2-1/2n+1 1/2-1/2n+1    1/2+1/2n+1 1/2-1/2n+1

 2  、曲线分析
根据上表比例,杂合子、纯合子所占比例坐标曲线图为:


注:1、自交n次后,第n代杂合子比例为1/2n,其余为纯合子,且显性纯合子与隐性纯合子比例为1:1,据此原理,可只记忆杂合子的计算公式,其他比例由此推到即可。
2、在育种实践中,可通过让杂合子连续自交的方法来提高纯合子所占的比例。
知识拓展:

1、孟德尔遗传规律的发现是运用了“假说一演绎法”的结果,孟德尔以高茎纯种豌豆和矮茎纯种豌豆作亲本,分别设计了纯合亲本杂交、F1的自交、F1的测交三组实验
①在现象分析阶段完成的实验是纯合亲本杂交和 F1的自交。
②孟德尔在解释一对相对性状的杂交实验现象时,提出的假设是控制生物性状的成对的遗传因子在形成配子时会彼此分离,分别进入不同的配子中,随配子遗传给后代。
③在检验假设阶段完成的实验是F2的测交。
2、萨顿利用类比推理,提出“基因在染色体上” 的假说;摩尔根利用“假说—演绎法”找到基因在染色体上的实验证据。
3、DNA半保留复制的提出也是“假说一演绎法” 的正确运用。沃森和克里克在发现了DNA分子的双螺旋结构后,又提出了遗传物质半保留复制的假说。 1958年,科学家以大肠杆菌为实验材料,运用同位素标记法设计了巧妙的实验,实验结果与根据假说一演绎推导的预期现象一致,证实了DNA的确是以半保留方式复制的。
4、基因的分离定律和自由组合定律中,F1和F2要表现特定的分离比,应具备以下条件。
①所研究的每一对相对性状只受一对等位基因控制,且相对性状为完全显性。
②不同类型的雌、雄配子都能发育良好,且受精的机会均等。
③所有后代都处于比较一致的环境中,且存活率相同。
④进行实验的群体要大,个体数量要足够多。
5、常见问题解题方法
(1)如果后代性状分离比为显:隐=3:1,则双亲一定都是杂合子(Dd)。即Dd×Dd→3D_:1dd
(2)若后代性状分离比为显:隐=1:1,则双亲一定是测交类型。即Dd×dd→1Dd:1dd
(3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。即DD×DD或DD×Dd或DD×dd
分离定律的实质:减Ⅰ分裂后期等位基因分离。

减数分裂的概念与过程:

1、减数分裂概念的理解:
(1)范围:进行有性生殖的生物。
(2)在原始生殖细胞(精原细胞或卵原细胞)发展成为成熟生殖细胞(精子或卵细胞)过程中进行的。
(3)过程:减数分裂过程中染色体复制一次细胞连续分裂两次。
(4)结果:新细胞染色体数减半。
2、减数分裂中染色体的变化过程
复制→联会→四分体→同源染色体彼此分离→染色单体彼此分离。

(1)精子的形成过程:

(2)卵细胞的形成过程:

与减数分裂相关的概念辨析:

1.染色体和染色单体
(1)染色体的条数等于着丝点数,有几个着丝点就有几条染色体。
(2)染色单体是染色体复制后,一个着丝点上连接的两条相同的单体,这两条单体被称为姐妹染色单体,其整体是一条染色体。
2.同源染色体与非同源染色体
(l)同源染色体
①在减数分裂过程中进行配对的两条染色体。
②形状大小一般相同,一条来自父方一条来自母方。
(2)非同源染色体:在减数分裂过程中不进行配对的染色体,它们形状大小一般不同。
3.姐妹染色单体和非姐妹染色单体
(1)姐妹染色单体:同一着丝点连着的两条染色单体。
(2)非姐妹染色单体:不同着丝点连接着的两条染色单体。同源染色体内的非姐妹染色单体四分体时期可发生交叉互换。
4.联会和四分体
(1)联会:是指减数第一次分裂过程中(前期)同源染色体两两配对的现象。
(2)四分体:联会后的每对同源染色体含有四条染色单体,叫做四分体,即1个四分体=1对同源染色体 =2条染色体=4条染色单体=4个DNA分子。
细胞不同分裂图像的判断方法:

1.减数分裂和有丝分裂的不同分裂时期图像
前期 中期 后期
有丝分裂 有同源染色体(染色体必定成对)
不联会

着丝点排列在赤道板

着丝点分裂
减数第一次分裂 有同源染色体(染色体必定成对)
联会

四分体排列在赤道板两侧

同源染色体分离,非同源染色体自由组合
减数第二次分裂 无同源染色体(染色体可以不成对)
无同源染色体

着丝点排列在赤道板

着丝点分裂
2.“三看法”识别细胞分裂方式

3.一般来说,细胞分裂方式的识别还需要观察细胞外形和细胞质的分裂方式等。
(1)细胞板隔裂——植物细胞分裂;细胞膜缢裂动物细胞分裂。
(2)矩形有壁为植物细胞;圆形无壁一般为动物细胞。
(3)依据细胞质分裂方式的判断:
 
表解减数分裂与有丝分裂的异同:

项目 有丝分裂 减数分裂
不同点  母细胞  体细胞或原始生殖细胞 原始生殖细胞
染色体复制   一次,有丝分裂间期    一次,减数第一次分裂前的间期
 细胞分裂次数  一次 两次
同源染色体行为  有同源染色体,但无同源染色体的联会、四分体,不出现同源染色体的非姐妹染色单体间的交叉互换及同源染色体的分离 有同源染色体的联会、四分体,出现同源染色体的非姐妹染色单体间的交叉互换及同源染色体的分离
  子细胞的数目   2个   雄性4个,磁性为(1+3)个
 子细胞的类型  体细胞  生殖细胞(精细胞或卵细胞)
 最终产生子细胞染色体数  与亲代细胞相同  比亲代细胞减少一半(发生在减数第一次分裂)
子细胞核的遗传物质组成 几乎相同  不一定相同(基因重组形成多种配子)
 子细胞中可遗传变异的来源   基因突变、染色体变异 基因突变、基因重组、染色体变异
染色体及DNA数量的变化
相同点 染色体都复制一次;出现纺锤体,均有子细胞产生,均有核膜、核仁的消失与重建过程;减数第二次分裂和有丝分裂相似,着丝点分裂,姐妹染色单体分开形成染色体
意义  使生物的亲代和子代之间保持了遗传特性的稳定性 减数分裂和受精作用维持了每种生物前后代体细胞中染色体数目的恒定

易错点拨:
1、同源染色体并非完全相同:同源染色体形态,大小一般都相同,但也有大小不相同的,如男性体细胞中X染色体和Y染色体是同源染色体, X染色体较大,Y染色体较小。
2、并非所有细胞分裂都存在四分体:联会形成四分体是减数第一次分裂特有的现象,有丝分裂过程中不进行联会,不存在四分体。
3、存在染色单体的时期是染色体复制之后、着丝点分裂之前的一段时期,如有丝分裂前、中期,减数第一次分裂,减数第二次分裂前、中期。
4、减数分裂过程中是先复制后联会,联会的两条染色体一定是同源染色体。联会是细胞进行正常减数分裂的基础。
5、减数分裂过程中,染色体复制一次,细胞分裂两次,着丝点分裂一次,染色体减半一次,DNA减半两次。
6、原始生殖细胞染色体数目与体细胞相同,其既能进行有丝分裂产生原始生殖细胞,也能进行减数分裂。 7、以二倍体生物为例,具有同源染色体的细胞:精(卵)原细胞、初级精(卵)母细胞、体细胞。无同源染色体的细胞:次级精(卵)母细胞、精(卵)细胞、第一(二)极体、精子。
例 某动物的精子中有染色体16条,则在该动物的初级精母细胞中存在染色体数、四分体数、染色单体数、DNA分子数、脱氧核苷酸链数分别是(   )
A,32、16、64、64、128
B.32、8、32、64、128
C.16、8、32、32、64
D.16、0、32、32、64
思路点拨:精子是精原细胞经过两次分裂得到的,其染色体数是精原细胞的一半,因此精原细胞中有同源染色体16对,初级精母细胞是精原细胞复制产生的,1条染色体含2个染色单体,2个DNA,4条DNA单链。答案A
减数分裂过程中DNA、染色体、染色单体的数目变化曲线:



DNA与染色体的变化曲线识别方法


知识拓展:

1、AaBb(两对基因独立遗传)产生配子情况

产生的配子种类 说明
一个精原细胞 4个,2种(AB、ab或Ab、aB) 植物产生配子的结论,与动物大致相同(区别仅在于:一个花粉母细胞产生的精子数量是8个,比动物要多)
一个雄性个体 4n个,4种(AB、ab、Ab、aB)
一个卵原细胞 1个,1种(AB或ab或Ab或aB)
一个雌性个体 n个,4种(AB、ab、Ab、aB)
 2、如何判断不同的精子是否来自同一个精原细胞?
①如果在四分体时期,不发生非姐妹染色单体的交叉互换,则一个精原细胞形成4个、2种精子细胞。
②如果在四分体时期,发生了非姐妹染色单体的交叉互换,则一个精原细脆形成4个、4种精子细胞。
③若两个精细胞中染色体完全相同,则它们可能来自同一个次级精母细胞。
④若两个精细胞中染色体恰好“互补”,则它们可能来自同一个初级精母细胞分裂产生的两个次级精母细胞。
⑤若两个精细胞中的染色体有的相同,有的互补,只能判定可能来自同一个生物不同精原细胞的减数分裂过程。
例  基因型为AaBb(两对等位基因位于两对同源染色体上)的一个精原细胞经减数分裂形成的精细胞种类有 (   ) A.1种   B.2种   C.4种   D.8种
思路点拨:一个基因型为AaBb的精原细胞减数分裂只形成2种类型的4个精子。但若一个基因型为AaBb个体产生的精子种类就应是4种。答案B
3、减数第一次分裂和有丝分裂的区别是前者同源染色体变化为四分体,后者不形成四分体。
4、减数第二次分裂同有丝分裂的区别是减数第二次分裂的细胞无同源染色体,而有丝分裂有同源染色体,其染色体行为的变化二者是相同的。
5、细胞分裂与变异类型的关系
分裂方式 变异类型
无丝分裂 基因突变
有丝分裂 基因突变、染色体变异
减数分裂 基因突变、基因重组、染色体变异


人类红绿色盲症:

1、红绿色盲:是道尔顿发现的,所以又名道尔顿症。它的遗传方式是伴X隐性遗传病。
2、人的正常色觉和红绿色盲的基因型和表现型:
女性 男性
基因型 XBXB XBXb XbXb XBY XbY
表现型 正常 正常(携带者) 色盲 正常 色盲

知识点拨:

红绿色盲的遗传特点:
1、色盲的男性患者多于女性患者,因为女性两个Xb才能患病,男性一个Xb就患病。
2、交叉遗传。
3、女患其父子必患。
红绿色盲的遗传方式:

1、 正常女性与色盲男性的婚配图解:男性的色盲基因只能传给女儿,不能传给儿子。

2、女性携带者和正常男性的婚配图解:男孩的色盲基因只能来自于母亲。

人类遗传病:

1、概念:通常是指由于遗传物质改变而一汽的人类疾病,主要可以分为单基因遗传病、多基因遗传病和染色体异常变异遗传病三类。
2、遗传病的判定方法:
(1)首先确定显隐性:
①“无中生有为隐性”;
②“有中生无为显性”
③判断是显性还是隐性遗传病方法:看患者总数,如果患者很多连续每代都有即为显性遗传。如果患者数量很少,只有某代或隔代个别有患者即为隐性遗传。
(2)再确定致病基因的位置:
①“无中生有为隐性,女儿患病为常隐”
②“有中生无为显性,女儿正常为常显”
③“母患子必患,女患父必患,男性患者多于女性”――最可能为“X隐”(女病男必病)
④“父患女必患,子患母必患,女性患者多于男性”――最可能为“X显”(男病女必病)
⑤“父传子,子传孙,子子孙孙无穷尽,无女性患者”――最可能为“伴Y”(男性全为患者)
(3)常染色体与性染色体同时存在的处理方法:
①当既有性染色体又有常染色体上的基因控制的两对及以上的性状遗传时;
②由性染色体上的基因控制的性状按伴性遗传处理;
③由常染色体上的基因控制的性状按分离规律处理;
④整体上则按基因的自由组合定律来处理
(4)某种遗传病的发病率=某种遗传病的患病人数/某种遗传病的被调查人数×100%

知识拓展:

1、单基因病又分为三种:
①显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的亲代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。
②隐性遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。
③性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。
2、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。
3、常见遗传病
(1)苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺陷,使苯丙氨酸和苯丙酮酸在体内堆积而致病,可出现患儿智力低下或成为白痴。苯丙酮尿症是先天代谢性疾病的一种,为常染色体隐性遗传。
(2)白化病:白化病属于家族遗传性疾病,为常染色体隐性遗传,常发生于近亲结婚的人群中。
(3)抗维生素D佝偻病:是一种肾小管遗传缺陷性疾病,发病率约1:25000。有低血磷性和低血钙性两种。比较多见的是低血磷性抗维生素D佝偻病,又称家族性低磷血症(familialhypophosphatemia),或肾性低血磷性佝偻病(renalhypophosphatemicrickets)。该病主要是由于位于X染色体上的PHEX基因的突变,导致肾小管回吸收磷减少所致。肠道吸收钙、磷不良,血磷降低,一般在0.65~0.97/mmol/L(2~3mg/dl)之间,钙磷乘积多在30以下,骨质不易钙化。
遗传特点是:女性中的发病率高于男性,家族性低血磷酸盐性佝偻病为X连锁显性遗传。女性患者骨骼疾病较男性为轻,可仅表现为低磷酸盐血症。散发的获得性病例常与良性间质性肿瘤有关(癌基因性佝偻病)。

发现相似题
与“某校学生在开展研究性学习时,进行人类遗传病方面的调查研究...”考查相似的试题有: