返回

高中三年级物理

首页
  • 计算题
    已知金属钨的逸出功W=4.54 eV,氢原子的能级如图所示。有一群处于n=3能级的氢原子,用辐射出的最大频率的光子照射金属钨,产生光电子的最大初动能是多少?

    本题信息:2011年江苏模拟题物理计算题难度较难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “已知金属钨的逸出功W=4.54 eV,氢原子的能级如图所示。有一群处于n=3能级的氢原子,用辐射出的最大频率的光子照射金属钨,产生光电子的最大初动能是多少?” 主要考查您对

光电效应方程

氢原子的能级

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 光电效应方程
  • 氢原子的能级

爱因斯坦光电效应方程:

Ek=hυ-W(Ek是光电子的最大初动能;W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功。)


光电效应的解法:

(1)对光电效应规律的问题掌握两条线索、明确各概念间的对应关系。
①入射光频率→决定光子能量→决定光电子的最大初动能。
②入射光强度→决定单位时间内接收的光子数→决定单位时间内发射的光电子数。即:

(2)对光电效应方程的应用,在理解光电效应方程的基础上,可以由方程式判定最大初动能的变化,比较逸出功、极限频率等情况,还可从图线的斜率、截距等求解相关问题。


光的强度与光电流强度:

(1)关于光强光强是指单位时间内通过垂直于光的传播方向上单位面积的能量,其计算公式为式中的Ⅳ为单位时间内通过垂直于光的传播方向上单位面积的光子数。同频率的光的强度随Ⅳ的不同而不同。 Ⅳ相同而频率不同的两种光其光的强度也不同。由此可见,光的强度是由光的频率v和光子数N共同决定的。
(2)关于单位时间内的光电子数在产生光电效应的前提下.因为一个电子成为光电子只能吸收一个光子的能量,所以一定频率的光的强度增大,则光电子数增加;不同频率的光,即使光强增大,逸出的光电子数也不一定多。
(3)关于光电流强度光电流强度是指光电流的饱和值(对应从阴极发射出的电子全部被拉向阳极的状态),因为光电流未达到饱和值前,其大小不仅与入射光的强度有关,还与光电管两极间的电压有关,只有在光电流达到饱和值后才和入射光的强度成正比。在入射光频率不变的情况下,光强正比于单位时间内照射到金属表面上单位面积的光子数,但若换用不同频率的光照射,即使光强相同,从金属表面逸出的光电子数也不相同,形成的光电流也不同。

光电效应的两个图像:

(1)光电子的最大初动能随入射光频率变化而变化的图像如图所示。

依据可知:当即图线在横轴上的截距在数值上等于金属的极限频率。
斜率普朗克常量。
图线在纵轴上的截距在数值上等于金属的逸出功:
(2)光电流随外电压变化而变化的规律
如图所示,纵轴表示光电流,横轴表示阴、阳两极处所加外电压。

时,光电流恰好为零,此时能求出光电子的最大初动能,即此电压称为遏止电压。
时,光电流恰达到饱和光电流,此时所有光电子都参与了导电,电流最大为


氢原子的能级:

1、氢原子的能级图

2、光子的发射和吸收
①原子处于基态时最稳定,处于较高能级时会自发地向低能级跃迁,经过一次或几次跃迁到达基态,跃迁时以光子的形式放出能量。
②原子在始末两个能级Em和En(m>n)间跃迁时发射光子的频率为ν,其大小可由下式决定:hυ=Em-En
③如果原子吸收一定频率的光子,原子得到能量后则从低能级向高能级跃迁。
④原子处于第n能级时,可能观测到的不同波长种类N为:
⑤原子的能量包括电子的动能和电势能(电势能为电子和原子共有)即:原子的能量En=EKn+EPn。轨道越低,电子的动能越大,但势能更小,原子的能量变小。
电子的动能:,r越小,EK越大。


氢原子的能级及相关物理量:

在氢原子中,电子围绕原子核运动,如将电子的运动看做轨道半径为r的圆周运动,则原子核与电子之间的库仑力提供电子做匀速圆周运动所需的向心力,那么由库仑定律和牛顿第二定律,有,则
①电子运动速率
②电子的动能
③电子运动周期
④电子在半径为r的轨道上所具有的电势能
⑤等效电流由以上各式可见,电子绕核运动的轨道半径越大,电子的运行速率越小,动能越小,电子运动的周期越大.在各轨道上具有的电视能越大。

原子跃迁时光谱线条数的确定方法:

1.直接跃迁与间接跃迁
原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁,两种情况辐射(或吸收)光子的频率可能不同。
2.一群原子和一个原子
氧原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了。
3.一群氢原子处于量子数为n的激发态时,可能辐射的光谱线条数
如果氢原子处于高能级,对应量子数为n,则就有可能向量子数为(n一1),(n一2),(n一3)…1诸能级跃迁,共可形成(n一1)条谱线,而跃迁至量子数为(n一 1)的氢原子又可向(n一2),(n一3)…1诸能级跃迁,共可形成(n一2)条谱线。同理,还可以形成(n一3),(n 一4)…1条谱线。将以上分析结果归纳求和,则从量子数为n对应的能级向低能级(n—1),(n一2)…1跃迁可形成的谱线总条数为(n一1)+(n一2)+(n一3)+ …+1=n(n一1)/2。数学表示为
4.一个氢原子处于量子数为n的激发态时,可能辐射的光谱线条数
对于处于量子数为n的一个氢原子,它可能发生直接跃迁,只放出一个光子,也可能先跃迁到某个中间能级上,再跃迁回基态而放出两个光子,也可能逐级跃迁,即先跃迁到n一1能级上,再跃迁到n一2能级上, ……,最后回到基态上,共放出n—1个光子。即一个氢原子在发生能级跃迁时,最少放出一个光子,最多可放出n一1个光子。

利用能量守恒及氢原子能级特征解决跃迁电离等问题的方法:

在原子的跃迁及电离等过程中,总能量仍是守恒的。原子被激发时,原子的始末能级差值等于所吸收的能量,即入射光子的全部能量或者入射粒子的全部或部分能量;原子被电离时,电离能等于原子被电离前所处能级的绝对值,原子所吸收的能量等于原子电离能与电离后电离出的电子的动能之和;辐射时辐射出的光子的能量等于原子的始末能级差。氢原子的能级 F 关系为,第n能级与量子数n2成反比,导致相邻两能级间的能量差不相等,量子数n越大,相邻能级差越小,且第n能级与第n一1能级的差比第n能级与无穷远处的能级差大,即另外,能级差的大小故也可利用光子能量来判定能级差大小。


跃迁与电离:

激发的方式:


发现相似题
与“已知金属钨的逸出功W=4.54 eV,氢原子的能级如图所示。有一群...”考查相似的试题有: