本试题 “细绳拴一个质量为m的小球,小球将左端固定在墙上的轻弹簧压缩(小球与弹簧不连接),小球静止时弹簧在水平位置,如图所示.将细绳烧断后,下列说法中正确的是...” 主要考查您对平抛运动
认识曲线运动
共点力的平衡
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
平抛运动的定义:
将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动。
平抛运动的特性:
以抛出点为坐标原点,水平初速度V0,竖直向下的方向为y轴正方向,建立如图所示的坐标系,在该坐标系下,对任一时刻t:
①位移
分位移(水平方向),(竖直方向);
合位移,(φ为合位移与x轴夹角)。
②速度
分速度(水平方向),Vy=gt(竖直方向);
合速度,(θ为合速度V与x轴夹角)。
③平抛运动时间:(取决于竖直下落的高度)。
④水平射程:(取决于竖直下落的高度和初速度)。
类平抛运动:
(1)定义当物体所受的合外力恒定且与初速度垂直时,物体做类平抛运动。
(2)类平抛运动的分解方法
①常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力的方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性。
②特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为,,初速度分解为,然后分别在x、y方向上列方程求解。
(3)类平抛运动问题的求解思路
根据物体受力特点和运动特点判断该问题属于类平抛运动问题——求出物体运动的加速度——根据具体问题选择用常规分解法还是特殊分解法求解。
(4)类抛体运动
当物体在巨力作用下运动时,若物体的初速度不为零且与外力不在一条直线上,物体所做的运动就是类抛体运动。
在类抛体运动中可采用正交分解法处理问题,基本思路为:
①建立直角坐标系,将外力、初速度沿这两个方向分解。
②求出这两个方向上的加速度、初速度。
③确定这两个方向上的分运动性质,选择合适的方程求解。
认识曲线运动:
1、曲线运动一定是变速运动;质点的路程总大于位移大小;质点作曲线运动时,受到合外力和相应的速度一定不为零,并总指向曲线内侧。
2、曲线运动速度的方向
曲线运动中速度的方向是时刻改变的,物体在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向。
3、物体做曲线运动的条件
物体作曲线运动的条件:运动物体所受的合外力(或加速度)的方向跟它的速度方向不在同一直线。
知识点拨:
曲线运动的条件:
当物体所受的合力(加速度)与其速度方向不在同一直线上,物体做曲线运动。曲线运动的合外力方向做曲线运动物体受到的合外力方向总是指向曲线的凹侧。
曲线运动的判断判断:
物体是否做曲线运动时,关键是看物体所受合力或加速度的方向与速度方向的关系,若两方向共线就是直线运动,不共线就是曲线运动。
知识拓展:
曲线运动的分析
在曲线运动中:当力与速度间的夹角等于90°时,作用力仅改变物体速度的方向,不改变速度的大小,例如匀速圆周运动;当夹角小于90°时,作用力不仅改变物体运动速度的方向,并且增大速度的量值;当夹角大于90°时,同样改变物体运动速度的方向,但是却减小速度的量值。在曲线运动中物体运动到某一点时,物体所受的合外力可以分解为沿速度方向和垂直速度方向两个分量,其中沿速度方向的分量改变速度的大小,垂直速度的分量改变速度的方向。曲线运动中速度的方向时刻在变,因为速度是个矢量,既有大小,又有方向,只要两者中的一个发生变化我们就是就表示速度矢量发生变化。从对加速度的定义(速度变化与发生这一变化所用时间的比值叫做加速度)可知做曲线运动的物体就具有了加速度,所以曲线运动是变速运动。
与“细绳拴一个质量为m的小球,小球将左端固定在墙上的轻弹簧压缩...”考查相似的试题有: