返回

高中三年级物理

首页
  • 计算题
    一光滑金属导轨如图所示,水平平行导轨MN、ST相距l=0.5 m,竖直半圆轨道NP、TQ直径均为D=0.8 m。轨道左端用阻值R=0.4 Ω的电阻相连。水平导轨的某处有一竖直向上、磁感应强度B=0.06 T的匀强磁场。光滑金属杆ab质量m=0.2 kg、电阻r=0.1 Ω,当它以5 m/s的初速度沿水平导轨从左端冲入磁场后恰好能到达竖直半圆轨道的最高点P、Q。设金属杆ab与轨道接触良好,并始终与导轨垂直,导轨电阻忽略不计。取g=10 m/s2,求金属杆:
    (1)刚进入磁场时,通过金属杆的电流大小和方向;
    (2)到达P、Q时的速度大小;
    (3)冲入磁场至到达P、Q点的过程中,电路中产生的焦耳热。


    本题信息:2012年福建省模拟题物理计算题难度较难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “一光滑金属导轨如图所示,水平平行导轨MN、ST相距l=0.5 m,竖直半圆轨道NP、TQ直径均为D=0.8 m。轨道左端用阻值R=0.4 Ω的电阻相连。水平导轨的某处有一竖...” 主要考查您对

向心力

能量转化与守恒定律

电磁感应现象中的切割类问题

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 向心力
  • 能量转化与守恒定律
  • 电磁感应现象中的切割类问题

向心力的定义:

在圆周运动中产生向心加速度的力。


向心力的特性:

1、向心力
总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小,大小,方向总是指向圆心(与线速度方向垂直),方向时刻在变化,是一个变力。向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供。
2、轻绳模型
Ⅰ、轻绳模型的特点:
①轻绳的质量和重力不计;
②可以任意弯曲,伸长形变不计,只能产生和承受沿绳方向的拉力;
③轻绳拉力的变化不需要时间,具有突变性。

Ⅱ、轻绳模型在圆周运动中的应用
小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:
①临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:

②小球能通过最高点的条件:(当时,绳子对球产生拉力)
③不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)
3、轻杆模型:
Ⅰ、轻杆模型的特点:
①轻杆的质量和重力不计;
②任意方向的形变不计,只能产生和承受各方向的拉力和压力;
③轻杆拉力和压力的变化不需要时间,具有突变性。

Ⅱ、轻杆模型在圆周运动中的应用
轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:
①小球能通过最高点的临界条件:(N为支持力)
②当时,有(N为支持力)
③当时,有(N=0)
④当时,有(N为拉力)


知识点拨:
向心力是从力的作用效果来命名的,因为它产生指向圆心的加速度,所以称它为向心力。它不是具有确定性质的某种类型的力。相反,任何性质的力都可以作为向心力。实际上它可是某种性质的一个力,或某个力的分力,还可以是几个不同性质的力沿着半径指向圆心的合外力。对一个物体进行受力分析的时候,是不需要画向心力的,向心力是效果力。


知识拓展:
对于向心力的理解,同学们可以切身的体会一下。两个同学手拉手,甲同学原地,乙同学绕着甲同学转,甲同学给乙同学的拉力就是向心力,当拉力大于向心力的时候,乙同学向心(甲同学)运动,当拉力小于向心力的时候,乙同学做离心运动。

能量守恒定律:


能量守恒中连接体问题的解法:

在两个或两个以上的物体组成的系统中,单独研究其中一个物体时,机械能往往是不守恒的,但对整体来说,机械能又常常是守恒的,所以在这类问题中通常需取整体作为研究对象,再找出其他运动联系来解题。
在判断系统的机械能是否守恒时,除重力、弹力外无其他外力做功,只是系统机械能守恒的必要条件,还需要看系统内力做功的情况。
(1)系统内两个直接接触的物体,如果满足动量守恒和机械能守恒条件,利用两守恒定律是解这类问题的常用方法两物体的运动联系是沿垂直于接触面的分速度相等。
(2)以轻绳相连的两个物体,如果和外界不存在摩擦力做功等问题时,只有机械能在两个物体之间的相互转移,两物体系统机械能守恒。解此类问题的关键是在绳的方向上两物体速度大小相等。
(3)与轻杆相连的物体在绕固定转动轴转动时,两物体的角速度相等。无转动轴时两物体沿杆方向的分速度相等。有摩擦阻力参与过程的能量问题的解法在有摩擦力或介质阻力参与的过程中,机械能不停地向内能转化,但在摩擦力或介质阻力大小不变的情况下,损失的机械能与通过的路程成正比。而在往返运动形式中,通过同一位置时的速率也就不相同,通过同样距离所用时间也不相同。在比较运动时间时,可以通过比较平均速度的大小进而得到时间关系。


电磁感应现象中的切割类问题:如果感应电动势是由导体运动而产生的,叫做动生电动势。
1、电磁感应中的电路问题
在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流。因此,电磁感应问题往往与电路问题联系在一起。解决与电路相联系的电磁感应问题的基本方法是:
①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
②画等效电路;
③运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解。
2、电磁感应现象中的力学问题
(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:
①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;
②求回路中电流强度;
③分析研究导体受力情况(包含安培力,用左手定则确定其方向);
④列动力学方程或平衡方程求解。
(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。
3、电磁感应中能量转化问题
导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:
①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
②画出等效电路,求出回路中电阻消耗电功率表达式;
③分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。
4、电磁感应中图像问题
电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。
另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。
发现相似题
与“一光滑金属导轨如图所示,水平平行导轨MN、ST相距l=0.5 m,...”考查相似的试题有: