返回

高中物理

首页
  • 单选题
    2005年10月12日,“神舟”六号顺利升空入轨,14日5时56分,“神舟”六号飞船进行轨道维持,飞船发动机点火工作了6.5s.所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐缓慢降低,在这种情况下,下列说法中正确的是(  )
    A.飞船受到的万有引力逐渐增大,线速度逐渐减小
    B.飞船的向心加速度逐渐增大,周期逐渐减小,线速度和角速度都逐渐增大
    C.飞船的动能、重力势能和机械能都逐渐减小
    D.重力势能逐渐减小,动能逐渐增大,机械能逐渐增大

    本题信息:2007年南开区模拟物理单选题难度容易 来源:未知
  • 本题答案
    查看答案
本试题 “2005年10月12日,“神舟”六号顺利升空入轨,14日5时56分,“神舟”六号飞船进行轨道维持,飞船发动机点火工作了6.5s.所谓“轨道维持”就是通过控制飞船上发动机的...” 主要考查您对

人造地球卫星

机械能守恒定律

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 人造地球卫星
  • 机械能守恒定律

人造地球卫星:

在地球上抛出的物体,当它的速度足够大时,物体就永远不会落到地面上,它将围绕地球旋转,成为一颗人造地球卫星,简称人造卫星。
 (1)人造卫星按运行轨道可分为低轨道卫星、中轨道卫星、高轨道卫星,以及地球同步轨道卫星、极地轨道卫星等。
 (2)按用途人造卫星可分为三大类:科学卫星、技术试验卫星和应用卫星。


人造地球卫星:

1、若已知人造卫星绕地心做匀速率圆周运动的轨道半径为r,地球的质量为M,各物理量与轨道半径的关系:
①由得卫星运行的向心加速度为:
②由得卫星运行的线速度为:
③由得卫星运行的角速度为:
④由得卫星运行的周期为:
⑤由得卫星运行的动能:
即随着运行的轨道半径的逐渐增大,向心加速度a、线速度v、角速度ω、动能Ek将逐渐减小,周期T将逐渐增大。
2、用万有引力定律求卫星的高度:
通过观测卫星的周期T和行星表面的重力加速度g及行星的半径R可以求出卫星的高度。
3、近地卫星、赤道上静止不动的物体
①把在地球表面附近环绕地球做匀速率圆周运动的卫星称之为近地卫星,它运行的轨道半径可以认为等于地球的半径R0,其轨道平面通过地心。若已知地球表面的重力加速度为g0,则
得:
得:
得:
若将地球半径R0=6.4×106m和g0=9.8m/s2代入上式,可得v=7.9×103m/s,ω=1.24×10-3rad/s,T=5074s,由于且卫星运行的轨道半径 r>R0,所以所有绕地球做匀速率圆周运动的卫星线速度v<7.9×103m/s,角速度ω<1.24×10-3rad/s,而周期T>5074s。
②特别需要指出的是,静止在地球表面上的物体,尽管地球对物体的重量也为mg,尽管物体随地球自转也一起转,绕地轴做匀速率圆周运动,且运行周期等于地球自转周期,与近地卫星、同步卫星有相似之处,但它的轨道平面不一定通过地心,如图所示。只有当纬度θ=0°,即物体在赤道上时,轨道平面才能过地心.地球对物体的引力F的一个分力是使物体做匀速率圆周运动所需的向心力f=mω2r,另一个分力才是物体的重量mg,即引力F不等于物体的重量mg,只有当r=0时,即物体在两极处,由于f=mω2r=0,F才等于mg。

③赤道上随地球自转而做圆周运动的物体与近地卫星的区别:
A、赤道上物体受的万有引力只有一小部分充当向心力,另一部分作为重力使得物体紧压地面,而近地卫星的引力全部充当向心力,卫星已脱离地球;
B、赤道上(地球上)的物体与地球保持相对静止,而近地卫星相对于地球而言处于高速旋转状态。
4、卫星的超重和失重
“超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机”中物体超重相同。“失重”是卫星进入轨道后正常运转时,卫星上的物体完全“失重”(因为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用,比如水银气压计、天平、密度计、电子称、摆钟等。
5、卫星变轨问题
卫星由低轨道运动到高轨道,要加速,加速后作离心运动,势能增大,动能减少,到高轨道作圆周运动时速度小于低轨道上的速度。

当以第一宇宙速度发射人造卫星,它将围绕地球表面做匀速圆周运动;若它发射的速度介于第一宇宙速度与第二宇宙速度之间,则它将围绕地球做椭圆运动。有时为了让卫星绕地球做圆周运动,要在卫星发射后做椭圆运动的过程中二次点火,以达到预定的圆轨道。设第一宇宙速度为v,则由第一宇宙速度的推导过程有。在地球表面若卫星发射的速度v1>v,则此时卫星受地球的万有引力应小于卫星以v1绕地表做圆周运动所需的向心力m,故从此时开始卫星将做离心运动,在卫星离地心越来越远的同时,其速率也要不断减小,在其椭圆轨道的远地点处(离地心距离为R′),速率为v2(v2<v1),此时由于G>m,卫星从此时起做向心运动,同时速率增大,从而绕地球沿椭圆轨道做周期性的运动。如果在卫星经过远地点处开动发动机使其速率突然增加到v3,使G=m,则卫星就可以以速率v3,以R′为半径绕地球做匀速圆周运动。同样的道理,在卫星回收时,选择恰当的时机使做圆周运动的卫星速率突然减小,卫星将会沿椭圆轨道做向心运动,让该椭圆与预定回收地点相切或相交,就能成功地回收卫星。


机械能守恒定律:

1、内容:只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变。
2、表达式:

3.条件
机械能守恒的条件是:只有重力或弹力做功。可以从以下三个方面理解:
(1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒。
(2)受其他力,但其他力不做功,只有重力或弹力做功。例如物体沿光滑的曲面下滑,受重力、曲面的支持力的作用,但曲面的支持力不做功,物体的机械能守恒。
(3)其他力做功,但做功的代数和为零。

判定机械能守恒的方法:

 (1)条件分析法:应用系统机械能守恒的条件进行分析。分析物体或系统的受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力 (或弹力)做功,没有其他力做功或其他力做功的代数和为零,则系统的机械能守恒。
(2)能量转化分析法:从能量转化的角度进行分析:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能(如内能),则系统的机械能守恒。
(3)增减情况分析法:直接从机械能的各种形式的能量的增减情况进行分析。若系统的动能与势能均增加或均减少,则系统的机械能不守恒;若系统的动能不变,而势能发生了变化,或系统的势能不变,而动能发生了变化,则系统的机械能不守恒;若系统内各个物体的机械能均增加或均减少,则系统的机械能不守恒。
(4)对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒。

竖直平面内圆周运动与机械能守恒问题的解法:

在自然界中,违背能量守恒的过程肯定是不能够发生的,而不违背能量守恒的过程也不一定能够发生,因为一个过程的进行要受到多种因素的制约,能量守恒只是这个过程发生的一个必要条件。如在竖直平面内的变速圆周运动模型中,无支撑物的情况下,物体要到达圆周的最高点,从能量角度来看,要求物体在最低点动能不小于最高点与最低点的重力势能差值。但只满足此条件物体并不一定能沿圆弧轨道运动到圆弧最高点。因为在沿圆弧轨道运动时还需满足动力学条件:所需向心力不小于重力,由此可以推知,在物体从圆弧轨道最低点开始运动时,若在动能全部转化为重力势能时所能上升的高度满足时,物体可在轨道上速度减小到零,即动能可全部转化为重力势能;在,物体上升到圆周最高点时的速度)时,物体可做完整的圆周运动;若在时,物体将在与圆心等高的位置与圆周最高点之间某处脱离轨道,之后物体做斜上抛运动,到达最高点时速度不为零,动能不能全部转化为重力势能,物体实际上升的高度满足。故在解决这类问题时不能单从能量守恒的角度来考虑。


发现相似题
与“2005年10月12日,“神舟”六号顺利升空入轨,14日5时56分,“神...”考查相似的试题有: