返回

高中三年级数学

首页
  • 解答题

    在直角坐标坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P向y轴作垂线段PP′,P′为垂足,
    (1)求线段PP′中点M的轨迹C的方程;
    (2)过点Q(-2,0)作直线l与曲线C交于A、B两点,设N是过点(,0),且以为方向向量的直线上一动点,满足(O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线l的方程;若不存在,说明理由。


    本题信息:2012年陕西省模拟题数学解答题难度较难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “在直角坐标坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P向y轴作垂线段PP′,P′为垂足,(1)求线段PP′中点M的轨迹C的方程;(2)过点...” 主要考查您对

向量的加、减法运算及几何意义

动点的轨迹方程

直线与椭圆方程的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 向量的加、减法运算及几何意义
  • 动点的轨迹方程
  • 直线与椭圆方程的应用

向量加法的定义:

已知非零向量ab,在平面内任取一点A,作,再做向量,则向量叫做的和,即
作向量的加法有“三角形法则”和“平行四边形法则”,其中“平行四边形法则”只适用于不共线的向量。

向量加法的三角形法则:

已知非零向量a,b,在平面内任意取一点A,作a,

这种求向量和的方法称为向量加法的三角形法则,如图
 
 
向量加法的平行四边形法则:
 
以同一点O起点的两个已知向量a,b为邻边作平行四边形OACB,则以O为起点的对角线OC就是ab的和,这种作两个向量和的方法叫做向量加法的平行四边形法则,如图.
  

向量减法的定义:

向量与向量的相反向量的和,叫做向量与向量的差,记作:
作向量减法有“三角形法则”:设,那么,由减向量和终点指向被减向量和终点。
注意:此处减向量与被减向量的起点相同。

向量减法的作图法:

 
 
  
 因此,a-b可以表示为从向量b的终点指向向量a的终点的向量,这就是向量减法的几何意义.

坐标运算:

已知,则


向量加减法的运算律:

(1)交换律:
(2)结合律:


求向量的和的三角形法则的理解:

使用三角形法则特别要注意“首尾相接”,具体做法是把用小写字母表示的向量,用两个大写字母表示(其中后面向量的起点与其前一个向量的终点重合,即用同一个字母表示),则由第一个向量的起点指向最后一个向量终点的有向线段就表示这些向量的和。对于n个向量,仍有 这可以称为向量加法的多边形法则。

作两个向量的和向量,可分四步:

①取点,注意取点的任意性;
②作相等向量,分别作与两个已知向量相等的向量,使它们的起点重合;
③作平行四边形,以两个向量为邻边作平行四边形;
④作和向量,与两个向量有共同起点的对角线作为和向量,共同的起点作为和向量的起点,对角线的另一个端点作为和向量的终点.当两个向量不共线时,三角形法则和平行四边形法则是一致的;当两个向量共线时,三角形法则同样适用,而平行四边形法则就不适用了.

向量的加法需要说明的几点:

①当两个非零向量ab不共线时,a+b的方向与a,b的方向都不相同,且
②当两个非零向量ab共线时,
a.向量ab同向(如下图),即向量a+ba(b)方向相同,且
 
b.向量ab反向(如上图)且|a|<|b|时,即a+bb方向相同(与a方向相反),且

综上可知

向量减法的理解:

①定义向量减法是借助了相反向量和向量加法,其实,向量减法的实质是向量加法的逆运算.两个向量的差仍是向量;
②作差向量时,作法一较为复杂,作法二较为简捷,应根据问题的需要灵活运用;
③以为邻边作平行四边形ABCD,则两条对角线表示的向量为这一结论在以后的应用是非常广泛的,应该加强理解并记住;
④对于任意一点O,简记为“中减起”,在解题中经常用到,必须记住.


 动点的轨迹方程:

 在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。


求动点的轨迹方程的基本方法:

直接法、定义法、相关点法、参数法、交轨法等。
1、直接法:
如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2、定义法:
利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。定义法的关键是条件的转化——转化成某一基本轨迹的定义条件;
3、相关点法:
动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
4、参数法:
求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要特别注意消参前后保持范围的等价性。多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
5、交轨法:
求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。

求轨迹方程的步骤:

(l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为M(x,y);
(2)写集合写出符合条件P的点M的集合{M|P(M)};
(3)列式用坐标表示P(M),列出方程f(x,y)=0;
(4)化简化方程f(x,y)=0为最简形式;
(5)证明证明以化简后的方程的解为坐标的点都是曲线上的点, 


直线与椭圆的方程:

设直线l的方程为:Ax+By+C=0(A、B不同时为零),椭圆(a>b>0),将直线的方程代入椭圆的方程,消去y(或x)得到一元二次方程,进而应用根与系数的关系解题。


椭圆的焦半径、焦点弦和通径:

(1)焦半径公式:
①焦点在x轴上时:|PF1|=a+ex0,|PF2|=a-ex0
②焦点在y轴上时:|PF1|=a+ey0,|PF2|=a-ey0;
(2)焦点弦:
过椭圆焦点的弦称为椭圆的焦点弦.设过椭圆的弦为AB,其中A(x1,y1),B(x2,y2),则|AB|=2a+e(x1+x2).由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数.
(3)通径:过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为 

椭圆中焦点三角形的解法:

椭圆上的点与两个焦点F1,F2所构成的三角形,通常称之为焦点三角形,解焦点三角形问题经常使用三角形边角关系定理,解题中,通过变形,使之出现,这样便于运用椭圆的定义,得到a,c的关系,打开解题思路,整体代换求是这类问题中的常用技巧。


关于椭圆的几个重要结论:

(1)弦长公式:

(2)焦点三角形:
上异于长轴端点的点,
(3)以椭圆的焦半径为直径的圆必与以长轴为直径的圆内切.
(4)椭圆的切线:处的切线方程为


(5)对于椭圆,我们有
 
 

发现相似题
与“在直角坐标坐标系中,已知一个圆心在坐标原点,半径为2的圆,...”考查相似的试题有: